23 resultados para C-reactive proteins

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the serum levels and diagnostic value of cytokines and acute phase proteins in patients with infective endocarditis (IE). Patients and methods: Serum samples from 63 patients diagnosed with IE and 71 control patients were analysed for the following markers: interleukin-6 (IL6), tumour necrosis factor-α (TNF-α), interleukin 1-β (IL1β), procalcitonin (PCT), lipopolysaccharide binding protein (LBP) and C-reactive protein (CRP). Results: Serum levels of IL6, IL1β and CRP were significantly elevated in patients with IE as compared to controls. PCT, TNF-α and LBP were not elevated. Conclusion: Serum CRP and IL6 are elevated in IE. IL 6 may aid in establishing the diagnosis. There was no correlation between IL 6 levels and CRP, causative microorganism, echocardiographic features or outcome. © 2007 The British Infection Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol /day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM- 1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration. © W. S. Maney & Son Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. The effects of CRP on primary human monocyte adhesion molecule expression and interaction with the endothelium have not been studied. Herein, we describe an investigation into the phenotypic and functional consequences of CRP binding to peripheral blood monocytes ex vivo. Peripheral whole blood was collected from healthy, non-smoking males. Mononuclear cells (MNC) and monocytes were isolated by differential centrifugation using lymphoprep and Dynal negative isolation kit, respectively. Cells were exposed to CRP from 0 to 250 μg/ml for 0-60 min at 37°C and analysed for (a) CD11b, PECAM-1 (CD31) and CD32 expression by flow cytometry and (b) adhesion to LPS (1 μg/ml; 0-24 h) treated human umbilical vein endothelial cells (HUVEC). CD14+ monocyte expression of CD11b increased significantly up to twofold when exposed to CRP, compared to controls. There was no significant difference in CD32 expression, whereas CD31 expression decreased after exposure to CRP. CRP treatment of monocytes inhibited their adhesion to early LPS-activated HUVEC (0-5 h). However, the adhesion of CRP-treated monocytes to HUVEC was significantly greater to late activation antigens on HUVEC (24 h, LPS) compared to controls. We have shown that CRP can affect monocyte activation ex vivo and induce phenotypic changes that result in an altered recruitment to endothelial cells. This study provides the first evidence for a further role for C-reactive protein in both monocyte activation and adhesion, which may be of importance during an inflammatory event.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Brain stem death can elicit a potentially manipulable cardiotoxic proinflammatory cytokine response. We investigated the prevalence of this response, the impact of donor management with tri-iodothyronine (T3) and methylprednisolone (MP) administration, and the relationship of biomarkers to organ function and transplant suitability. METHODS: In a prospective randomized double-blinded factorially designed study of T3 and MP therapy, we measured serum levels of interleukin-1 and -6 (IL-1 and IL-6), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein, and procalcitonin (PCT) levels in 79 potential heart or lung donors. Measurements were performed before and after 4 hr of algorithm-based donor management to optimize cardiorespiratory function and +/-hormone treatment. Donors were assigned to receive T3, MP, both drugs, or placebo. RESULTS: Initial IL-1 was elevated in 16% donors, IL-6 in 100%, TNF-alpha in 28%, CRP in 98%, and PCT in 87%. Overall biomarker concentrations did not change between initial and later measurements and neither T3 nor MP effected any change. Both PCT (P =0.02) and TNF-alpha (P =0.044) levels were higher in donor hearts with marginal hemodynamics at initial assessment. Higher PCT levels were related to worse cardiac index and right and left ventricular ejection fractions and a PCT level more than 2 ng x mL(-1) may attenuate any improvement in cardiac index gained by donor management. No differences were observed between initially marginal and nonmarginal donor lungs. A PCT level less than or equal to 2 ng x mL(-1) but not other biomarkers predicted transplant suitability following management. CONCLUSIONS: There is high prevalence of a proinflammatory environment in the organ donor that is not affected by tri-iodothyronine or MP therapy. High PCT and TNF-alpha levels are associated with donor heart dysfunction. (C) 2009 Lippincott Williams & Wilkins, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. CRP is currently one of the best markers of inflammatory disease and disease activity. One of the keys cells involved in inflammation within chronic inflammatory diseases is the monocyte. Monocytes are able to modulate inflammation through cytokine expression, cytosolic peroxide formation, adhesion molecule expression and subsequent adhesion/migration to sites of inflammation. CRP has been previously shown to bind directly to monocytes through Fc receptors. However this observation is not conclusive and requires further investigation. The effects of incubation of CRP with human primary and monocytic cell lines were examined using monocytic cytokine expression, adhesion molecule expression and adhesion to endothelial cells and intracellular peroxide formation, as end points. Monocytic intracellular signalling events were investigated after interaction of CRP with specific CRP receptors on monocytes. These initial signalling events were examined for their role in modulating monocytic adhesion molecule and cytokine expression. Monocyte recruitment and retention in the vasculature is also influenced by oxidative stress. Therefore the effect of 6 weeks of antioxidant intervention in vivo was examined on monocytic adhesion molecule expression, adhesion to endothelial cells ex vivo and on serum CRP concentrations, pre- and post- supplementation with the antioxidants vitamin C and vitaInin E. In summary, CRP is able to bind FcγRIIa. CRP binding FcγR initiates an intracellular signalling cascade that phosphorylates the non-receptor tyrosine kinase, Syk, associated with intracellular tyrosine activating motifs on the cytoplasmic tail of Fcγ receptors. CRP incubations increased phosphatidyl inositol turnover and Syk phosphorylation ultimately lead to Ca2+ mobilisation in monocytes. CRP mediated Syk phosphorylation in monocytes leads to an increase in CD 11b and IL-6 expression. CRP engagement with monocytes also leads to an increase in peroxide production, which can be inhibited in vitro using the antioxidants α-tocopherol and ascorbic acid. CRP mediated CD 11b expression is not redox regulated by CRP mediated changes in cytosolic peroxides. The FcyRIla polymorphism at codon 131 effects the phenotypic driven changes described in monocytes by CRP, where R/R allotypes have a greater increase in CD11b, in response to CRP, which may be involved in promoting the monocytic inflammatory response. CRP leads to an increase in the expression of pro-inflammatory cytokines, which alters the immune phenotype of circulating monocytes. Vitamin C supplementation reduced monocytic adhesion to endothelial cells, but had no effect on serum levels of CRP. Where long-term antioxidant intervention may provide benefit from the risk of developing vascular inflammatory disease, by reducing monocytic adhesion to the vasculature. In conclusion CRP appears to be much more than just a marker of ongoing inflammation or associated inflammatory disease and disease activity. This data suggests that at pathophysiological concentrations, CRP may be able to directly modulate inflammation through interacting with monocytes and thereby alter the inflammatory response associated with vascular inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) associates with excess cardiovascular risk and there is a need to assess that risk. However, individual lipid levels may be influenced by disease activity and drug use, whereas lipid ratios may be more robust. A cross-sectional cohort of 400 consecutive patients was used to establish factors that influenced individual lipid levels and lipid ratios in RA, using multiple regression models. A further longitudinal cohort of 550 patients with RA was used to confirm these findings, using generalized estimating equations. Cross-sectionally, higher C-reactive protein (CRP) levels correlated with lower levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol ([HDL-C] P = .015), whereas lipid ratios did not correlate with CRP. The findings were broadly replicated in the longitudinal data. In summary, the effects of inflammation on individual lipid levels may underestimate lipid-associated cardiovascular disease (CVD) risk in RA, thus lipid ratios may be more appropriate for CVD risk stratification in RA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To determine the impact of periodontitis on oxidative/inflammatory status and diabetes control in Type 2 diabetes. Materials and Methods: A comparative study of 20 Type 2 diabetes patients with periodontitis [body mass index (BMI) 31+5], 20-age/gender-matched, non-periodontitis Type 2 diabetes controls (BMI 29+6) and 20 non-diabetes periodontitis controls (BMI 25+4) had periodontal examinations and fasting blood samples collected. Oxidative stress was determined by plasma small molecule antioxidant capacity (pSMAC) and protein carbonyl levels; inflammatory status by total/differential leucocytes, fibrinogen and high sensitivity C-reactive protein (hsCRP); diabetes status by fasting glucose, HbA1c, lipid profile, insulin resistance and secretion. Statistical analysis was performed using SPSS. Results: pSMAC was lower (p=0.03) and protein carbonyls higher (p=0.007) in Type 2 diabetes patients with periodontitis compared with those without periodontitis. Periodontitis was associated with significantly higher HbA1c (p=0.002) and fasting glucose levels (p=0.04) and with lower ß-cell function (HOMA-ß; p=0.01) in diabetes patients. Periodontitis had little effect on inflammatory markers or lipid profiles, but Type 2 diabetes patients with periodontitis had higher levels of hsCRP than those without diabetes (p=0.004) and the lowest levels of HDL-cholesterol of all groups. Conclusion: Periodontitis is associated with increased oxidative stress and compromised glycaemic control in Type 2 diabetes patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the earliest descriptions of Alzheimer's disease (AD), many theories have been advanced as to its cause. These include: (1) exacerbation of aging, (2) degeneration of anatomical pathways, including the cholinergic and cortico-cortical pathways, (3) an environmental factor such as exposure to aluminium, head injury, or malnutrition, (4) genetic factors including mutations of amyloid precursor protein (APP) and presenilin (PSEN) genes and allelic variation in apolipoprotein E (Apo E), (5) mitochondrial dysfunction, (6) a compromised blood brain barrier, (7) immune system dysfunction, and (8) infectious agents. This review discusses the evidence for and against each of these theories and concludes that AD is a multifactorial disorder in which genetic and environmental risk factors interact to increase the rate of normal aging ('allostatic load'). The consequent degeneration of neurons and blood vessels results in the formation of abnormally aggregated 'reactive' proteins such as ß-amyloid (Aß) and tau. Gene mutations influence the outcome of age-related neuronal degeneration to cause early onset familial AD (EO-FAD). Where gene mutations are absent and a combination of risk factors present, Aß and tau only slowly accumulate not overwhelming cellular protection systems until later in life causing late-onset sporadic AD (LO-SAD). Aß and tau spread through the brain via cell to cell transfer along anatomical pathways, variation in the pathways of spread leading to the disease heterogeneity characteristic of AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Serum concentrations of polyclonal free light chains (FLC) represent the activity of the adaptive immune system. This study assessed the relationship between polyclonal FLC and the established marker of innate immunity, C-reactive protein (CRP), in chronic and acute disease. Methods: We utilized four cross-sectional chronic disease patient cohorts: chronic kidney disease (CKD), diabetes, vasculitis and kidney transplantation; and a longitudinal intensive care case series to assess the kinetics of production in acute disease. Results: There was a weak association between polyclonal FLC and high-sensitivity CRP (hs-CRP) in the study cohorts. A longitudinal assessment in acute disease showed a gradual increase in FLC concentrations over time, often when CRP levels were falling, demonstrating clear differences in the response kinetics of CRP and FLC in this setting. Conclusion: Polyclonal FLC and hs-CRP provide independent information as to inflammatory status. Prospective studies are now required to assess the utility of hs-CRP and polyclonal FLC in combination for risk stratification in disease populations. © 2013 John Wiley & Sons Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Circulating antiangiogenic factors and proinflammatory cytokines are implicated in the pathogenesis of preeclampsia. This study was performed to test the hypothesis that steroids modify the balance of inflammatory and proangiogenic and antiangiogenic factors that potentially contribute to the patient’s evolving clinical state. Seventy singleton women, admitted for antenatal corticosteroid treatment, were enrolled prospectively. The study group consisted of 45 hypertensive women: chronic hypertension (n=6), severe preeclampsia (n=32), and superimposed preeclampsia (n=7). Normotensive women with shortened cervix (<2.5 cm) served as controls (n=25). Maternal blood samples of preeclampsia cases were obtained before steroids and then serially up until delivery. A clinical severity score was designed to clinically monitor disease progression. Serum levels of angiogenic factors (soluble fms-like tyrosine kinase-1 [sFlt-1], placental growth factor [PlGF], soluble endoglin [sEng]), endothelin-1 (ET-1), and proinflammatory markers (IL-6, C-reactive protein [CRP]) were assessed before and after steroids. Soluble IL-2 receptor (sIL-2R) and total immunoglobulins (IgG) were measured as markers of T- and B-cell activation, respectively. Steroid treatment coincided with a transient improvement in clinical manifestations of preeclampsia. A significant decrease in IL-6 and CRP was observed although levels of sIL-2R and IgG remained unchanged. Antenatal corticosteroids did not influence the levels of angiogenic factors but ET-1 levels registered a short-lived increase poststeroids. Although a reduction in specific inflammatory mediators in response to antenatal steroids may account for the transient improvement in clinical signs of preeclampsia, inflammation is unlikely to be the major contributor to severe preeclampsia or useful for therapeutic targeting.