11 resultados para C-13 and 2D NMR
em Aston University Research Archive
Resumo:
Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMA(CONV)) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMA(DVB)). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional H-1 and C-13 NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMA(CONV)), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMA(CONV) and the DVB-containing (EPR-g-GMA(DVB)) systems is also reported (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The oculomotor synergy as expressed by the CA/C and AC/A ratios was investigated to examine its influence on our previous observation that whereas convergence responses to stereoscopic images are generally stable, some individuals exhibit significant accommodative overshoot. Using a modified video refraction unit while viewing a stereoscopic LCD, accommodative and convergence responses to balanced and unbalanced vergence and focal stimuli (BVFS and UBVFS) were measured. Accommodative overshoot of at least 0.3 D was found in 3 out of 8 subjects for UBVFS. The accommodative response differential (RD) was taken to be the difference between the initial response and the subsequent mean static steady-state response. Without overshoot, RD was quantified by finding the initial response component. A mean RD of 0.11 +/- 0.27 D was found for the 1.0 D step UBVFS condition. The mean RD for the BVFS was 0.00 +/- 0.17 D. There was a significant positive correlation between CA/C ratio and RD (r = +0.75, n = 8, p <0.05) for only UBVFS. We propose that inter-subject variation in RD is influenced by the CA/C ratio as follows: an initial convergence response, induced by disparity of the image, generates convergence-driven accommodation commensurate with the CA/C ratio; the associated transient defocus subsequently decays to a balanced position between defocus-induced and convergence-induced accommodations.
Resumo:
The effect of stainless steel, glass, zirconium and titanium enamel surfaces on the thermal and photooxidative toughening mechanism of dehydrated castor oil films deposited on these surfaces was investigated using different analytical and spectroscopic methods. The conjugated and non-conjugated double bonds were identified and quantified using both Raman spectroscopy and 1D and 2D NMR spectroscopy. The disappearance of the double bonds in thermally oxidised oil-on-surface films was shown to be concomitant with the formation of hydroperoxides (determined by iodometric titration). The type of the surface had a major effect on the rate of thermal oxidation of the oil, but all of the surfaces examined had resulted in a significantly higher rate of oxidation compared to that of the neat oil. The highest effect was exhibited by the stainless steel surface followed by zirconium enamel, titanium enamel and glass. The rate of thermal oxidation of the oil-on-steel surface (at 100 °C, based on peroxide values) was more than five times faster than that of oil-on-glass and more than 21 times faster than the neat oil when compared under similar thermal oxidative conditions. The rate of photooxidation at 60 °C of oil-on-steel films was found to be about one and half times faster than their rate of thermal oxidation at the same temperature. Results from absorbance reflectance infrared microscopy with line scans taken across the depth of thermally oxidised oil-on-steel films suggest that the thermal oxidative toughening mechanism of the oil occurs by two different reaction pathways with the film outermost layers, i.e. furthest away from the steel surface, oxidising through a traditional free radical oxidation process involving the formation of various oxygenated products formed from the decomposition of allylic hydroperoxides, whereas, in the deeper layers closer to the steel surface, crosslinking reactions predominate.
Resumo:
OBJECTIVES: To determine the carrier rate of the GJB2 mutation c.35delG and c.101T>C in a UK population study; to determine whether carriers of the mutation had worse hearing or otoacoustic emissions compared to non-carriers. DESIGN: Prospective cohort study. SETTING: University of Bristol, UK. PARTICIPANTS: Children in the Avon Longitudinal Study of Parents and Children. 9202 were successfully genotyped for the c.35delG mutation and c.101>T and classified as either carriers or non-carriers. OUTCOME MEASURES: Hearing thresholds at age 7, 9 and 11 years and otoacoustic emissions at age 9 and 11. RESULTS: The carrier frequency of the c.35delG mutation was 1.36% (95% CI 1.13 to 1.62) and c.101T>C was 2.69% (95% CI 2.37 to 3.05). Carriers of c.35delG and c.101T>C had worse hearing than non-carriers at the extra-high frequency of 16 kHz. The mean difference in hearing at age 7 for the c.35delG mutation was 8.53 dB (95% CI 2.99, 14.07) and 12.57 dB at age 9 (95% CI 8.10, 17.04). The mean difference for c.101T>C at age 7 was 3.25 dB (95% CI -0.25 to 6.75) and 7.61 dB (95% CI 4.26 to 10.96) at age 9. Otoacoustic emissions were smaller in the c.35delG mutation carrier group: at 4 kHz the mean difference was -4.95 dB (95% CI -6.70 to -3.21) at age 9 and -3.94 dB (95% CI -5.78 to -2.10) at age 11. There was weak evidence for differences in otoacoustic emissions amplitude for c.101T>C carriers. CONCLUSION: Carriers of the c.35delG mutation and c.101T>C have worse extra-high-frequency hearing than non-carriers. This may be a predictor for changes in lower-frequency hearing in adulthood. The milder effects observed in carriers of c.101T>C are in keeping with its classification as a mutation causing mild/moderate hearing loss in homozygosity or compound heterozygosity.
The preparation and properties of some pyrazolo/1, 5-c/pyramidines and pyrazolo/1, 5-c/quinazo-lines
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively.
Resumo:
The reaction of 1,3-bis(tetrazol-1-yl)-2-propanol (btzpol) with Fe(BF4)2 · 6H2O in acetonitrile yields the remarkable 2D coordination polymer [FeII(btzpol)1.8(btzpol-OBF3)1.2](BF4)0.8 · (H2O)0.8(CH3CN) (1). This compound has been structurally characterized using an X-ray single-crystal synchrotron radiation source. The iron(II) centers are bridged by means of double btzpol bridges along the c direction, and by single btzpol bridges along the b direction. The reaction of part of the ligand with the counterion has forced the compound to crystallize in this extended two dimensional structure. The compound shows spin-transition properties, both induced by temperature and light, with T½ = 112 K and T(LIESST) = 46 K, respectively. The relaxation of the metastable high-spin state created by irradiation is exponential, following an Arrhenius type behavior at high temperature, and dominated by a temperature independent tunneling process at lower temperatures.