59 resultados para Business enterprises - Finance - Risk management - Thailand
em Aston University Research Archive
Resumo:
Several parties (stakeholders) are involved in a construction project. The conventional Risk Management Process (RMP) manages risks from a single party perspective, which does not give adequate consideration to the needs of others. The objective of multi-party risk management is to assist decision-makers in managing risk systematically and most efficiently in a multi-party environment. Multi-party Risk Management Processes (MRMP) consist of risk identification, structuring, analysis and developing responses from all party perspectives. The MRMP has been applied to a cement plant construction project in Thailand to demonstrate its effectiveness.
Resumo:
Purpose: The purpose of this paper is to investigate the relations between perceived business uncertainty (PBU), use of external risk management (RM) consultants, formalisation of RM, magnitude of RM methods and perceived organisational outcomes. Design/methodology/approach: This paper is based on a questionnaire survey of members of the Chartered Institute of Management Accountants in the UK. Using AMOS 17.0, the paper tests the strength of the direct and indirect effects among the variables and explores the fit of the overall path model. Findings: The results indicate significant and positive associations exist between the extent of PBU and the level ofRMformalisation, as well as between the level ofRMformalisation and the magnitude of RMmethods adopted. The use of externalRMconsultants is also found to have a significant and positive impact on the magnitude of RM methods adopted. Finally, both the extent of RM formalisation and the magnitude of RM methods adopted are seen to be significantly associated with overall improvement in organisational outcomes. Research limitations/implications: The study uses perceptual measures of the level of business uncertainty, usage of RM and organisational outcomes. Further, the respondents are members of a management accounting professional body and the views of other managers, such as risk managers, who are also important to the governance process are not incorporated. Originality/value: This study provides empirical evidence on the impact ofRMdesign and usage on improvements in organisational outcomes. It contributes to the RM literature where empirical research is needed in order to be comparable with the traditional management control system literature.
Resumo:
Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management (RM) is conceived mainly in financial terms, as for example, in the financial institutions sector. Financial institutions are affected by internal and external changes with the consequent accommodation to new business models, new regulations and new global competition that includes new big players. These changes induce financial institutions to develop different methodologies for managing risk, such as the enterprise risk management (ERM) approach, in order to adopt a holistic view of risk management and, consequently, to deal with different types of risk, levels of risk appetite, and policies in risk management. However, the methodologies for analysing risk do not explicitly include knowledge management (KM). This research examines the potential relationships between KM and two RM concepts: perceived quality of risk control and perceived value of ERM. To fulfill the objective of identifying how KM concepts can have a positive influence on some RM concepts, a literature review of KM and its processes and RM and its processes was performed. From this literature review eight hypotheses were analysed using a classification into people, process and technology variables. The data for this research was gathered from a survey applied to risk management employees in financial institutions and 121 answers were analysed. The analysis of the data was based on multivariate techniques, more specifically stepwise regression analysis. The results showed that the perceived quality of risk control is significantly associated with the variables: perceived quality of risk knowledge sharing, perceived quality of communication among people, web channel functionality, and risk management information system functionality. However, the relationships of the KM variables to the perceived value of ERM are not identified because of the low performance of the models describing these relationships. The analysis reveals important insights into the potential KM support to RM such as: the better adoption of KM people and technology actions, the better the perceived quality of risk control. Equally, the results suggest that the quality of risk control and the benefits of ERM follow different patterns given that there is no correlation between both concepts and the distinct influence of the KM variables in each concept. The ERM scenario is different from that of risk control because ERM, as an answer to RM failures and adaptation to new regulation in financial institutions, has led organizations to adopt new processes, technologies, and governance models. Thus, the search for factors influencing the perceived value of ERM implementation needs additional analysis because what is improved in RM processes individually is not having the same effect on the perceived value of ERM. Based on these model results and the literature review the basis of the ERKMAS (Enterprise Risk Knowledge Management System) is presented.
Resumo:
Conventional project management techniques are not always sufficient for ensuring time, cost and quality achievement of large-scale construction projects due to complexity in planning and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation) under-estimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk numagement throughout project life cycle. However, the effectiveness of risk management depends on the technique in which the effects of risk factors are analysed and! or quantified. This study proposes Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique as a tool for risk analysis because it can handle subjective as well as objective factors in decision model that are conflicting in nature. This provides a decision support system (DSS) to project managenumt for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and competitive business environment. The whole methodology is explained through a case study of a cross-country petroleum pipeline project in India and its effectiveness in project1nana.gement is demonstrated.
Resumo:
Enterprise resource planning (ERP) projects are risky. But if they are implemented appropriately, they can provide competitive advantage to organisations. Therefore, ERP implementation has become one of the most critical aspects of today's information management research. The main purpose of this article is to describe a new ERP risk assessment framework (RAF) that can be used to increase the success of ERP implementation. In this article, through a case study based in a leading UK-based energy service provider, we demonstrate the new RAF, which has been shown to help identify and mitigate risks in ERP implementation. In contrast to other research, this RAF identifies risks hierarchically in external engagement, programme management, work stream and work package levels across technical, schedule, operational, business and organisational categories. This not only helped to develop responses to mitigate risks but also facilitates on-going risk control.
Resumo:
Biomass is projected to account for approximately half of the new energy production required to achieve the 2020 primary energy target in the UK. Combined heat and power (CHP) bioenergy systems are not only a highly efficient method of energy conversion, at smaller-scales a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost incumbent; a high carbon centralised energy system. Unidentified or unmitigated barriers occurring during the project lifecycle may not only negatively impact on the project but could ultimately lead to project failure. The research develops a decision support system (DSS) for small-scale (500 kWe to 10 MWe) biomass combustion CHP project development and risk management in the early stages of a potential project’s lifecycle. By supporting developers in the early stages of project development with financial, scheduling and risk management analysis, the research aims to reduce the barriers identified and streamline decision-making. A fuzzy methodology is also applied throughout the developed DSS to support developers in handling the uncertain or approximate information often held at the early stages of the project lifecycle. The DSS is applied to a case study of a recently failed (2011) small-scale biomass CHP project to demonstrate its applicability and benefits. The application highlights that the proposed development within the case study was not viable. Moreover, further analysis of the possible barriers with the DSS confirmed that some possible modifications to be project could have improved this, such as a possible change of feedstock to a waste or residue, addressing the unnecessary land lease cost or by increasing heat utilisation onsite. This analysis is further supported by a practitioner evaluation survey that confirms the research contribution and objectives are achieved.
Resumo:
In any organization, risk plays a huge role in the success or failure of any business endeavour. Measuring and managing risk is a difficult and often complicated task and the global financial crisis of the late noughties can be traced to a worldwide deficiency in risk management regimes. One of the problems in understanding how best to manage risk is a lack of detailed examples of real world practice. In this accessible textbook the author sets the world of risk management in the context of the broader corporate governance agenda, as well as explaining the core elements of a risk management system. Material on the differences between risk management and internal auditing is supplemented by a section on the professionalization of risk – a relatively contemporary evolution. Enterprise risk management is also fully covered. With a detailed array of risk management cases – including Tesco, RBS and the UK government – lecturers will find this a uniquely well researched resource, supplemented by materials that enable the cases to be easily integrated into the classroom. Risk managers will be delighted with the case materials made available for the first time with the publication of this book.
Resumo:
Intranet technologies accessible through a web based platform are used to share and build knowledge bases in many industries. Previous research suggests that intranets are capable of providing a useful means to share, collaborate and transact information within an organization. To compete and survive successfully, business organisations are required to effectively manage various risks affecting their businesses. In the construction industry too this is increasingly becoming an important element in business planning. The ability of businesses, especially of SMEs which represent a significant portion in most economies, to manage various risks is often hindered by fragmented knowledge across a large number of businesses. As a solution, this paper argues that Intranet technologies can be used as an effective means of building and sharing knowledge and building up effective knowledge bases for risk management in SMEs, by specifically considering the risks of extreme weather events. The paper discusses and evaluates relevant literature in this regard and identifies the potential for further research to explore this concept.
Resumo:
Risks and uncertainties are part and parcel of any project as projects are planned with many assumptions. Therefore, managing those risks is the key to project success. Although risk is present in all most all projects, large-scale construction projects are most vulnerable. Risk is by nature subjective. However, managing risk subjectively posses the danger of non-achievement of project goals. This study introduces an analytical framework for managing risk in projects. All the risk factors are identified, their effects are analyzed, and alternative responses are derived with cost implication for mitigating the identified risks. A decision-making framework is then formulated using decision tree. The expected monetary values are derived for each alternative. The responses, which require least cost is selected. The entire methodology has been explained through a case study of an oil pipeline project in India and its effectiveness in managing projects has been demonstrated. © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.
Resumo:
Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.
Resumo:
Construction projects are risky. However, the characteristics of the risk highly depend on the type of procurement being adopted for managing the project. A build-operate-transfer (BOT) project is recognized as one of the most risky project schemes. There are instances of project failure where a BOT scheme was employed. Ineffective rts are increasingly being managed using various risk management tools and techniques. However, application of those tools depends on the nature of the project, organization's policy, project management strategy, risk attitude of the project team members, and availability of the resources. Understanding of the contents and contexts of BOT projects, together with a thorough understanding of risk management tools and techniques, helps select processes of risk management for effective project implementation in a BOT scheme. This paper studies application of risk management tools and techniques in BOT projects through reviews of relevant literatures and develops a model for selecting risk management process for BOT projects. The application to BOT projects is considered from the viewpoints of the major project participants. Discussion is also made with regard to political risks. This study would contribute to the establishment of a framework for systematic risk management in BOT projects.
Resumo:
Purpose - The purpose of the paper is to the identify risk factors, which affect oil and gas construction projects in Vietnam and derive risk responses. Design/methodology/approach - Questionnaire survey was conducted with the involvement of project executives of PetroVietnam and statistical analysis was carried out in order to identify the major project risks. Subsequently, mitigating measures were derived using informal interviews with the various levels of management of PetroVietnam. Findings - Bureaucratic government system and long project approval procedures, poor design, incompetence of project team, inadequate tendering practices, and late internal approval processes from the owner were identified as major risks. The executives suggested various strategies to mitigate the identified risks. Reforming the government system, effective partnership with foreign collaborators, training project executives, implementing contractor evaluation using multiple criteria decision-making technique, and enhancing authorities of project people were suggested as viable approaches. Practical implications - The improvement measures as derived in this study would improve chances of project success in the oil and gas industry in Vietnam. Originality/value - There are several risk management studies on managing projects in developing countries. However, as risk factors vary considerably across industry and countries, the study of risk management for successful projects in the oil and gas industry in Vietnam is unique and has tremendous importance for effective project management.
Resumo:
Construction projects are risky. A build-operate-transfer (BOT) project is recognised as one of the most risky project schemes. This scheme has been employed rather frequently in the past few decades, in both developed and developing countries. However, because of its risky nature, there have been failures as well as successes. Risk analysis in an appropriate way is desirable in implementing BOT projects. There are various tools and techniques applicable to risk analysis. The application of these risk analysis tools and techniques (RATTs) to BOT projects depends on an understanding of the contents and contexts of BOT projects, together with a thorough understanding of RATTs. This paper studies key points in their applications through reviews of relevant literatures and discusses the application of RATTs to BOT projects. The application to BOT projects is considered from the viewpoints of the major project participants, i.e. government, lenders and project companies. Discussion is also made with regard to political risks, which are very important in BOT projects. A flow chart has been introduced to select an appropriate tool for risk management in BOT projects. This study contributes to the establishment of a framework for systematic risk management in BOT projects.
Resumo:
This study demonstrates a quantitative approach to construction risk management through analytic hierarchy process and decision tree analysis. All the risk factors are identified, their effects are quantified by determining probability and severity, and various alternative responses are generated with cost implication for mitigating the quantified risks. The expected monetary values are then derived for each alternative in a decision tree framework and subsequent probability analysis aids the decision process in managing risks. The entire methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.