7 resultados para Buck fotovoltaico in isola mppt
em Aston University Research Archive
Resumo:
Inadequate blood flow to an organ, ischaemia, may lead to both local and remote tissue injury characterized by oedema, increased microvascular permeability to protein and degradation of connective tissue components. This damage is probably caused by the accumulation and inappropriate activation of neutrophils which occurs when the tissue is reperfused. To test this hypothesis a number of in vitro models of the sequential stages of ischaemia/reperfusion injury were examined. Methods were initially developed to examine the adhesion of neutrophils to monolayers of a cultured endothelial cell line (ECV304) after periods of hypoxia and reoxygenation. Neutrophil migration in response to factors secreted by the treated endothelial cells was then assessed. The genesis of an inappropriate oxidative burst by the neutrophil upon exposure to endothelial chemoattractants and adhesion molecules was also measured. Finally to appraise how tissue function might be affected by endothelial cell hypoxia the contractility of vascular smooth muscle was examined. Neutrophil adhesion to ECV304 cells, which had been hypoxic for 4 hours and then reoxygenated for 30 minutes, was significantly increased. This response was probably initiated by reactive oxygen species (ROS) generated by the endothelial cells. Blockage of their production by allopurinol reduced the heightened adhesion. Similarly removal of ROS by superoxide dismutase or catalase also attenuated adhesion. ROS generation in turn caused the release of a soluble factor (s) which induced a conformational change on the neutrophil surface allowing it to bind to the intercellular adhesion molecule 1 (ICAM-1) on the endothelial cell. Soluble factor (s) from hypoxia/reoxygenated endothelial cells also had a powerful neutrophil chemoattractant ability. When neutrophils were exposed to both hypoxic/reoxygenated endothelial cells and the soluble factor (s) released by them a large oxidative burst was elicited. This response was greatest immediately after reoxygenation and one hour later was diminishing suggesting at least one of the components involved was labile. Analysis of the supernatant from hypoxic/reoxygenated endothelial cell cultures and studies using inhibitors of secretion suggested platelet activating factor (PAF) may be a major component in this overall sequence of events. Lesser roles for IL-8, TNF and LTB4 were also suggested. The secretory products from hypoxia/reoxygenated endothelial cells also affected smooth muscle contractility having an anti-vasoconstrictor or relaxation property, similar to that exerted by PAF.
Resumo:
To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.
Resumo:
The use of ex-transportation battery system (i.e. second life EV/HEV batteries) in grid applications is an emerging field of study. A hybrid battery scheme offers a more practical approach in second life battery energy storage systems because battery modules could be from different sources/ vehicle manufacturers depending on the second life supply chain and have different characteristics e.g. voltage levels, maximum capacity and also different levels of degradations. Recent research studies have suggested a dc-side modular multilevel converter topology to integrate these hybrid batteries to a grid-tie inverter. Depending on the battery module characteristics, the dc-side modular converter can adopt different modes such as boost, buck or boost-buck to suitably transfer the power from battery to the grid. These modes have different switching techniques, control range, different efficiencies, which give a system designer choice on operational mode. This paper presents an analysis and comparative study of all the modes of the converter along with their switching performances in detail to understand the relative advantages and disadvantages of each mode to help to select the suitable converter mode. Detailed study of all the converter modes and thorough experimental results based on a multi-modular converter prototype based on hybrid batteries has been presented to validate the analysis.
Resumo:
Although maximum power point tracking (MPPT) is crucial in the design of a wind power generation system, the necessary control strategies should also be considered for conditions that require a power reduction, called de-loading in this paper. A coordinated control scheme for a proposed current source converter (CSC) based DC wind energy conversion system is presented in this paper. This scheme combines coordinated control of the pitch angle, a DC load dumping chopper and the DC/DC converter, to quickly achieve wind farm de-loading. MATLAB/Simulink simulations and experiments are used to validate the purpose and effectiveness of the control scheme, both at the same power level. © 2013 IEEE.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance.