6 resultados para Bubbly Flow Structures

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that distillation tray efficiency depends on the liquid flow pattern, particularly for large diameter trays. Scale·up failures due to liquid channelling have occurred, and it is known that fitting flow control devices to trays sometirr.es improves tray efficiency. Several theoretical models which explain these observations have been published. Further progress in understanding is at present blocked by lack of experimental measurements of the pattern of liquid concentration over the tray. Flow pattern effects are expected to be significant only on commercial size trays of a large diameter and the lack of data is a result of the costs, risks and difficulty of making these measurements on full scale production columns. This work presents a new experiment which simulates distillation by water cooling. and provides a means of testing commercial size trays in the laboratory. Hot water is fed on to the tray and cooled by air forced through the perforations. The analogy between heat and mass transfer shows that the water temperature at any point is analogous to liquid concentration and the enthalpy of the air is analogous to vapour concentration. The effect of the liquid flow pattern on mass transfer is revealed by the temperature field on the tray. The experiment was implemented and evaluated in a column of 1.2 m. dia. The water temperatures were measured by thennocouples interfaced to an electronic computerised data logging system. The "best surface" through the experimental temperature measurements was obtained by the mathematical technique of B. splines, and presented in tenos of lines of constant temperature. The results revealed that in general liquid channelling is more imponant in the bubbly "mixed" regime than in the spray regime. However, it was observed that severe channelling also occurred for intense spray at incipient flood conditions. This is an unexpected result. A computer program was written to calculate point efficiency as well as tray efficiency, and the results were compared with distillation efficiencies for similar loadings. The theoretical model of Porter and Lockett for predicting distillation was modified to predict water cooling and the theoretical predictions were shown to be similar to the experimental temperature profiles. A comparison of the repeatability of the experiments with an errors analysis revealed that accurate tray efficiency measurements require temperature measurements to better than ± 0.1 °c which is achievable with conventional techniques. This was not achieved in this work, and resulted in considerable scatter in the efficiency results. Nevertheless it is concluded that the new experiment is a valuable tool for investigating the effect of the liquid flow pattern on tray mass transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical continuation method has been carried out seeking solutions for two distinct flow configurations, planar Couette flow (PCF) and laterally heated flow in a vertical slot (LHF). We found that the spanwise vortex solution in LHF identifies a new solution in PCF. The vortical structure of our new solution has the shape of a hairpin observed ubiquitously in high-Reynolds-number turbulent flow, and we believe this discovery may provide the paradigm for a hierarchical organization of coherent structures in turbulent shear layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single phase solutions containing three components have been observed to exhibit foaminess near a single to two liquid phase boundary. It was seen, in a sintered plate column under mass transfer conditions, that distillation systems where the liquid appeared as one phase in one part of a column and two phases in another part, exhibited foaminess when the liquid concentration was near the one phase to two phase boundary. Various ternary systems have been studied in a 50 plate. 30mm i.d. Oldershaw column and it was observed that severe foaming occurred in the middle section of the column near the one liquid phase to two liquid phase boundary and no foaming occurred at the end of the column where liquid was either one phase or two phase. This is known as Ross type foam. Mass transfer experiments with Ross type ternary systems have been carried out in a perspex simulator with small and large hole diameter trays. It was observed that by removal of the more volatile component, Ross type foam did not build up on the tray. Severe entrainment of liquid was observed in all cases leading to a 'dry' tray, even with a low free area small diameter hole tray which was expected to produce a bubbly mixture. Entrainment was more severe for high gas superficial velocities and large hole diameters. This behaviour is quite different from the build up of foam observed when one liquid phase/two liquid phase Ross systems were contacted with air above a small sintered disc or with vapour in an Oldershaw distillation column. This observation explains why distillation columns processing mixtures which change from one liquid phase to two liquid phases (or vice versa) must be severely derated to avoid flooding. Single liquid phase holdups at the spray to bubbly transition were measured using a perspex simulator similar to that of Porter & Wong (17). i.e. with no liquid cross flow. A light transmission technique was used to measure the transition from spray regime to bubbly regime. The effect of tray thickness and the ratio of hole diameter to tray thickness on the transition was evaluated using trays of the same hole diameter and free area but having thickness of 2.38 mm, 4 mm, and 6.35 mm. The liquid holdup at the transition was less with the thin metal trays. This result may be interpreted by the theory of Lockett (101), which predicts the transition liquid holdup in terms of the angle of the gas iet leaving the holes in the sieve plate. All the existing correlations have been compared and none were found to be satisfactory and these correlations have been modified in view of the experimental results obtained. A new correlation has been proposed which takes into account the effect of the hole diameter to tray thickness ratio on the transition and good agreement was obtained between the experimental results and the correlated values of the liquid holdup at the transition. Results have been obtained for two immiscible liquids [kerosene and water] on trays to determine whether foaming can be eliminated by operating in the spray regime. Kerosene was added to a fixed volume of water or water was added to a fixed volume of kerosene. In both cases, there was a transition from spray to bubbly. In the water fixed system. the liquid holdup at the transition was slightly less than the pure kerosene system. Whilst for the kerosene fixed system, the transition occurred at much lower liquid holdups. Trends In the results were similar to those for single liquid phase. New correlations have been proposed for the two cases. It has been found that Ross type foams, observed in a sintered plate column and in the Oldershaw column can be eliminated by either carrying out the separation in a packed column or by the addition of defoaming additives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much research is currently centred on the detection of damage in structures using vibrational data. The work presented here examined several areas of interest in support of a practical technique for identifying and locating damage within bridge structures using apparent changes in their vibrational response to known excitation. The proposed goals of such a technique included the need for the measurement system to be operated on site by a minimum number of staff and that the procedure should be as non-invasive to the bridge traffic-flow as possible. Initially the research investigated changes in the vibrational bending characteristics of two series of large-scale model bridge-beams in the laboratory and these included ordinary-reinforced and post-tensioned, prestressed designs. Each beam was progressively damaged at predetermined positions and its vibrational response to impact excitation was analysed. For the load-regime utilised the results suggested that the infuced damage manifested itself as a function of the span of a beam rather than a localised area. A power-law relating apparent damage with the applied loading and prestress levels was then proposed, together with a qualitative vibrational measure of structural damage. In parallel with the laboratory experiments a series of tests were undertaken at the sites of a number of highway bridges. The bridges selected had differing types of construction and geometric design including composite-concrete, concrete slab-and-beam, concrete-slab with supporting steel-troughing constructions together with regular-rectangular, skewed and heavily-skewed geometries. Initial investigations were made of the feasibility and reliability of various methods of structure excitation including traffic and impulse methods. It was found that localised impact using a sledge-hammer was ideal for the purposes of this work and that a cartridge `bolt-gun' could be used in some specific cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new types of phenolic resin-derived synthetic carbons with bi-modal and tri-modal pore-size distributions were used as supports for Pd catalysts. The catalysts were tested in chemoselective hydrogenation and hydrodehalogenation reactions in a compact multichannel flow reactor. Bi-modal and tri-modal micro-mesoporous structures of the synthetic carbons were characterised by N2 adsorption. HR-TEM, PXRD and XPS analyses were performed for characterising the synthesised catalysts. N2 adsorption revealed that tri-modal synthetic carbon possesses a well-developed hierarchical mesoporous structure (with 6.5 nm and 42 nm pores), contributing to a larger mesopore volume than the bi-modal carbon (1.57 cm3 g-1versus 1.23 cm3 g-1). It was found that the tri-modal carbon promotes a better size distribution of Pd nanoparticles than the bi-modal carbon due to presence of hierarchical mesopore limitting the growth of Pd nanoparticles. For all the model reactions investigated, the Pd catalyst based on tri-modal synthetic carbon (Pd/triC) show high activity as well as high stability and reproducibility. The trend in reactivities of different functional groups over the Pd/triC catalyst follows a general order alkyne ≫ nitro > bromo ≫ aldehyde.