20 resultados para Braun Bonilla, Juan Diego, 1859-
em Aston University Research Archive
Resumo:
We study the effect of fibre base and grating profile on the efficiency of ultra-long Raman lasers. We show that for the studied parameters, FBG profile does not affect the performance when operating away from the zero-dispersion wavelength.
Resumo:
We study the effect of fibre base and grating profile on the efficiency of ultra-long Raman lasers. We show that for the studied parameters, FBG profile does not affect the performance when operating away from the zero-dispersion wavelength.
Resumo:
We show, using nonlinearity management, that the optimal performance in high-bit-rate dispersion-managed fiber systems with hybrid amplification is achieved for a specific amplifier spacing that is different from the asymptotically vanishing length corresponding to ideally distributed amplification [Opt. Lett. 15, 1064 (1990)]. In particular, we prove the existence of a nontrivial optimal span length for 40-Gbit/s wavelength-division transmission systems with Raman-erbium-doped fiber amplification. Optimal amplifier lengths are obtained for several dispersion maps based on commonly used transmission fibers. © 2005 Optical Society of America.
Resumo:
We propose a new approach to the generation of an alphabet for secret key exchange relying on small variations in the cavity length of an ultra-long fiber laser. This new concept is supported by experimental results showing how the radio-frequency spectrum of the laser can be exploited as a carrier to exchange information. The test bench for our proof of principle is a 50 km-long fiber laser linking two users, Alice and Bob, where each user can randomly add an extra 1 km-long segment of fiber. The choice of laser length is driven by two independent random binary values, which makes such length become itself a random variable. The security of key exchange is ensured whenever the two independent random choices lead to the same laser length and, hence, to the same free spectral range.
Resumo:
We have measured the longitudinal power distribution inside a random distributed feedback Raman fiber laser. The observed distribution has a sharp maximum whose position depends on pump power. The spatial distribution profiles are different for the first and the second Stokes waves. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 Optical Society of America.
Resumo:
Unrepeatered 115.6 Gbit/s per channel WDM DP-QPSK transmission with novel URFL based amplification is demonstrated. Transmission of 1.4 Tb/s was possible in 350 km link and 2.2 Tb/s was achieved in 325 km without employing ROPA or speciality fibres.
Resumo:
We present experimental results on a 50km fiber laser switching among four different values of the free-spectral range for possible applications in secure key-distribution. © 2014 OSA.
Resumo:
Unrepeatered 100 Gbit/s per channel wave-divisionmultiplexed dual-polarization-QPSK transmission with random distributed feedback fiber laser-based Raman amplification using fiber Bragg grating is demonstrated. Transmission of 1.4 Tb/s (14 × 100 Gbit/s) was possible in 352.8 km link and 2.2 Tb/s (22 × 100 Gbit/s) was achieved in 327.6 km without employing remote optically pumped amplifier or speciality fibers.
Resumo:
We numerically optimise 2nd-order random DFB Raman laser amplifiers for transmission for the first time. Optical signal to noise ratio, nonlinear phase shift, signal power variation and the impact of the reflectivity of FBG are investigated in the links from 10 - 120 km.
Resumo:
Unrepeatered transmission over SMF-28 fibre is investigated using ultra-long Raman fibre laser based amplification. Experiments and simulations demonstrate 8 x 42.7Gb/s transmission up to 320km (67dB) span length using DPSK and ASK modulation with direct detection. © 2012 OSA.
Resumo:
Distributed fibre sensors provide unique capabilities for monitoring large infrastructures with high resolution. Practically, all these sensors are based on some kind of backscattering interaction. A pulsed activating signal is launched on one side of the sensing fibre and the backscattered signal is read as a function of the time of flight of the pulse along the fibre. A key limitation in the measurement range of all these sensors is introduced by fibre attenuation. As the pulse travels along the fibre, the losses in the fibre cause a drop of signal contrast and consequently a growth in the measurement uncertainty. In typical single-mode fibres, attenuation imposes a range limit of less than 30km, for resolutions in the order of 1-2 meters. An interesting improvement in this performance can be considered by using distributed amplification along the fibre [1]. Distributed amplification allows having a more homogeneous signal power along the sensing fibre, which also enables reducing the signal power at the input and therefore avoiding nonlinearities. However, in long structures (≥ 50 km), plain distributed amplification does not perfectly compensate the losses and significant power variations along the fibre are to be expected, leading to inevitable limitations in the measurements. From this perspective, it is simple to understand intuitively that the best possible solution for distributed sensors would be offered by a virtually transparent fibre, i.e. a fibre exhibiting effectively zero attenuation in the spectral region of the pulse. In addition, it can be shown that lossless transmission is the working point that allows the minimization of the amplified spontaneous emission (ASE) noise build-up. © 2011 IEEE.
Resumo:
We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.
Resumo:
The performance of unrepeatered transmission of a seven Nyquist-spaced 10 GBd PDM-16QAM superchannel using full signal band coherent detection and multi-channel digital back propagation (MC-DBP) to mitigate nonlinear effects is analysed. For the first time in unrepeatered transmission, the performance of two amplification systems is investigated and directly compared in terms of achievable information rates (AIRs): 1) erbium-doped fibre amplifier (EDFA) and 2) second-order bidirectional Raman pumped amplification. The experiment is performed over different span lengths, demonstrating that, for an AIR of 6.8 bit/s/Hz, the Raman system enables an increase of 93 km (36 %) in span length. Further, at these distances, MC-DBP gives an improvement in AIR of 1 bit/s/Hz (to 7.8 bit/s/Hz) for both amplification schemes. The theoretical AIR gains for Raman and MC-DBP are shown to be preserved when considering low-density parity-check codes. Additionally, MC-DBP algorithms for both amplification schemes are compared in terms of performance and computational complexity. It is shown that to achieve the maximum MC-DBP gain, the Raman system requires approximately four times the computational complexity due to the distributed impact of fibre nonlinearity.
Resumo:
We numerically optimise in-span signal power asymmetry in advanced Raman amplification schemes, reaching 3% over 62 km SMF, and evaluate its impact on the performance of systems using mid-link OPC using 7 × 15 16QAM Nyquist-spaced WDM-PDM. © 2015 OSA.
Resumo:
We numerically optimise in-span signal power asymmetry in different advanced Raman amplification schemes, achieving a 3% asymmetry over 62 km SMF using random DFB Raman laser amplifier. We then evaluate the impact of such asymmetry on the performance of systems using mid-link OPC by simulating transmission of 7 x 15 Gbaud 16QAM Nyquist-spaced WDM-PDM signals. (C) 2015 Optical Society of America