10 resultados para Brain oscillations
em Aston University Research Archive
Resumo:
Although atypical social behaviour remains a key characterisation of ASD, the presence ofsensory and perceptual abnormalities has been given a more central role in recentclassification changes. An understanding of the origins of such aberrations could thus prove afruitful focus for ASD research. Early neurocognitive models of ASD suggested that thestudy of high frequency activity in the brain as a measure of cortical connectivity mightprovide the key to understanding the neural correlates of sensory and perceptual deviations inASD. As our review shows, the findings from subsequent research have been inconsistent,with a lack of agreement about the nature of any high frequency disturbances in ASD brains.Based on the application of new techniques using more sophisticated measures of brainsynchronisation, direction of information flow, and invoking the coupling between high andlow frequency bands, we propose a framework which could reconcile apparently conflictingfindings in this area and would be consistent both with emerging neurocognitive models ofautism and with the heterogeneity of the condition.
Resumo:
Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.
Resumo:
Both animal and human studies suggest that the efficiency with which we are able to grasp objects is attributable to a repertoire of motor signals derived directly from vision. This is in general agreement with the long-held belief that the automatic generation of motor signals by the perception of objects is based on the actions they afford. In this study, we used magnetoencephalography (MEG) to determine the spatial distribution and temporal dynamics of brain regions activated during passive viewing of object and non-object targets that varied in the extent to which they afforded a grasping action. Synthetic Aperture Magnetometry (SAM) was used to localize task-related oscillatory power changes within specific frequency bands, and the time course of activity within given regions-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. Both single subject and group-averaged data on the spatial distribution of brain activity are presented. We show that: (i) significant reductions in 10-25 Hz activity within extrastriate cortex, occipito-temporal cortex, sensori-motor cortex and cerebellum were evident with passive viewing of both objects and non-objects; and (ii) reductions in oscillatory activity within the posterior part of the superior parietal cortex (area Ba7) were only evident with the perception of objects. Assuming that focal reductions in low-frequency oscillations (< 30 Hz) reflect areas of heightened neural activity, we conclude that: (i) activity within a network of brain areas, including the sensori-motor cortex, is not critically dependent on stimulus type and may reflect general changes in visual attention; and (ii) the posterior part of the superior parietal cortex, area Ba7, is activated preferentially by objects and may play a role in computations related to grasping. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Changes in the pattern of activity of neurones within the basal ganglia are relevant in the pathophysiology and symptoms of Parkinson’s disease. The globus pallidus (GP) – subthalamic nucleus (STN) network has been proposed to form a pacemaker driving regenerative synchronous bursting activity. In order to test whether this activity can be sustained in vitro a 20o parasagittal slice of mouse midbrain was developed which preserved functional connectivity between the STN and GP. Mouse STN and GP cells were characterised electrophysiologically by the presence or absence of a voltage sag in response to hyperpolarising current steps indicative of Ih and the presence of rebound depolarisations. The presence of evoked and spontaneous post-synaptic GABA and glutamatergic currents indicated functional connectivity between the STN and GP. In control slices, STN cells fired action potentials at a regular rate, activity which was unaffected by bath application of the GABAA receptor antagonist picrotoxin (50 μM) or the glutamate receptor antagonist CNQX (10 μM). Paired extracellular recordings of STN cells showed uncorrelated firing. Oscillatory burst activity was induced pharmacologically using the glutamate receptor agonist, NMDA (20 μM), in combination with the potassium channel blocker apamin (50 -100 nM). The burst activity was unaffected by bath application of picrotoxin or CNQX while paired STN recordings showed uncorrelated activity indicating that the activity is not produced by the neuronal network. Thus, no regenerative activity is evident in this mouse brain preparation, either in control slices or when bursting is pharmacologically induced, suggesting the requirement of other afferent inputs that are not present in the slice. Using single-unit extracellular recording, dopamine (30 μM) produced an excitation of STN cells. This excitation was independent of synaptic transmission and was mimicked by both the Dl-like receptor agonist SKF38393 (10 μM) and the D2-like receptor agonist quinpirole (10 μM). However, the excitation was partially reduced by the D1-like antagonist SCH23390 (2 μM) but not by the D2-like antagonists sulpiride (10 μM) and eticlopride (10 μM). Using whole-recordings, dopamine was shown to induce membrane depolarisation. This depolarisation was caused either by a D1-like receptor mediated increase in a conductance which reversed at -34 mV, consistent with a non-specific cation conductance, or a D2-like receptor mediated decrease in conductance which reversed around -100 mV, consistent with a potassium conductance. Bath application of dopamine altered the pattern of the burst-firing produced by NMDA an apamin towards a more regular pattern. This effect was associated with a decrease in amplitude and ll1crease in frequency of TTX-resistant plateau potentials which underlie the burst activity.
Resumo:
The work presented in this thesis is divided into two distinct sections. In the first, the functional neuroimaging technique of Magnetoencephalography (MEG) is described and a new technique is introduced for accurate combination of MEG and MRI co-ordinate systems. In the second part of this thesis, MEG and the analysis technique of SAM are used to investigate responses of the visual system in the context of functional specialisation within the visual cortex. In chapter one, the sources of MEG signals are described, followed by a brief description of the necessary instrumentation for accurate MEG recordings. This chapter is concluded by introducing the forward and inverse problems of MEG, techniques to solve the inverse problem, and a comparison of MEG with other neuroimaging techniques. Chapter two provides an important contribution to the field of research with MEG. Firstly, it is described how MEG and MRI co-ordinate systems are combined for localisation and visualisation of activated brain regions. A previously used co-registration methods is then described, and a new technique is introduced. In a series of experiments, it is demonstrated that using fixed fiducial points provides a considerable improvement in the accuracy and reliability of co-registration. Chapter three introduces the visual system starting from the retina and ending with the higher visual rates. The functions of the magnocellular and the parvocellular pathways are described and it is shown how the parallel visual pathways remain segregated throughout the visual system. The structural and functional organisation of the visual cortex is then described. Chapter four presents strong evidence in favour of the link between conscious experience and synchronised brain activity. The spatiotemporal responses of the visual cortex are measured in response to specific gratings. It is shown that stimuli that induce visual discomfort and visual illusions share their physical properties with those that induce highly synchronised gamma frequency oscillations in the primary visual cortex. Finally chapter five is concerned with localization of colour in the visual cortex. In this first ever use of Synthetic Aperture Magnetometry to investigate colour processing in the visual cortex, it is shown that in response to isoluminant chromatic gratings, the highest magnitude of cortical activity arise from area V2.
Resumo:
In the absence of external stimuli, the mammalian brain continues to display a rich variety of spontaneous activity. Such activity is often highly stereotypical, is invariably rhythmic, and can occur with periodicities ranging from a few milliseconds to several minutes. Recently, there has been a particular resurgence of interest in fluctuations in brain activity occurring at <0.1 Hz, commonly referred to as very slow or infraslow oscillations (ISOs). Whilst this is primarily due to the emergence of functional magnetic resonance imaging (fMRI) as a technique which has revolutionized the study of human brain dynamics, it is also a consequence of the application of full band electroencephalography (fbEEG). Despite these technical advances, the precise mechanisms which lead to ISOs in the brain remain unclear. In a host of animal studies, one brain region that consistently shows oscillations at <0.1 Hz is the thalamus. Importantly, similar oscillations can also be observed in slices of isolated thalamic relay nuclei maintained in vitro. Here, we discuss the nature and mechanisms of these oscillations, paying particular attention to a potential role for astrocytes in their genesis. We also highlight the relationship between this activity and ongoing local network oscillations in the alpha (a; ~8-13 Hz) band, drawing clear parallels with observations made in vivo. Last, we consider the relevance of these thalamic ISOs to the pathological activity that occurs in certain types of epilepsy.
Resumo:
The paradoxical effects of the hypnotic imidazopyridine zolpidem, widely reported in persistent vegetative state, have been replicated recently in brain-injured and cognitively impaired patients. However, the neuronal mechanisms underlying these benefits are yet to be demonstrated. We implemented contemporary neuroimaging methods to investigate sensorimotor and cognitive improvements, observed in stroke patient JP following zolpidem administration.
Resumo:
In relaxed wakefulness, the EEG exhibits robust rhythms in the alpha band (8-13 Hz), which decelerate to theta (approximately 2-7 Hz) frequencies during early sleep. In animal models, these rhythms occur coherently with synchronized activity in the thalamus. However, the mechanisms of this thalamic activity are unknown. Here we show that, in slices of the lateral geniculate nucleus maintained in vitro, activation of the metabotropic glutamate receptor (mGluR) mGluR1a induces synchronized oscillations at alpha and theta frequencies that share similarities with thalamic alpha and theta rhythms recorded in vivo. These in vitro oscillations are driven by an unusual form of burst firing that is present in a subset of thalamocortical neurons and are synchronized by gap junctions. We propose that mGluR1a-induced oscillations are a potential mechanism whereby the thalamus promotes EEG alpha and theta rhythms in the intact brain.
Resumo:
Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation.
Resumo:
While some aspects of social processing are shared between humans and other species, some aspects are not. The former seems to apply to merely tracking another's visual perspective in the world (i.e., what a conspecific can or cannot perceive), while the latter applies to perspective taking in form of mentally “embodying” another's viewpoint. Our previous behavioural research had indicated that only perspective taking, but not tracking, relies on simulating a body schema rotation into another's viewpoint. In the current study we employed Magnetoencephalography (MEG) and revealed that this mechanism of mental body schema rotation is primarily linked to theta oscillations in a wider brain network of body-schema, somatosensory and motor-related areas, with the right posterior temporo-parietal junction (pTPJ) at its core. The latter was reflected by a convergence of theta oscillatory power in right pTPJ obtained by overlapping the separately localised effects of rotation demands (angular disparity effect), cognitive embodiment (posture congruence effect), and basic body schema involvement (posture relevance effect) during perspective taking in contrast to perspective tracking. In a subsequent experiment we interfered with right pTPJ processing using dual pulse Transcranial Magnetic Stimulation (dpTMS) and observed a significant reduction of embodied processing. We conclude that right TPJ is the crucial network hub for transforming the embodied self into another's viewpoint, body and/or mind, thus, substantiating how conflicting representations between self and other may be resolved and potentially highlighting the embodied origins of high-level social cognition in general.