3 resultados para Bored pile
em Aston University Research Archive
Resumo:
The work presented in this thesis describes an investigation into the production and properties of thin amorphous C films, with and without Cr doping, as a low wear / friction coating applicable to MEMS and other micro- and nano-engineering applications. Firstly, an assessment was made of the available testing techniques. Secondly, the optimised test methods were applied to a series of sputtered films of thickness 10 - 2000 nm in order to: (i) investigate the effect of thickness on the properties of coatingslcoating process (ii) investigate fundamental tribology at the nano-scale and (iii) provide a starting point for nanotribological coating optimisation at ultra low thickness. The use of XPS was investigated for the determination of Sp3/Sp2 carbon bonding. Under C 1s peak analysis, significant errors were identified and this was attributed to the absence of sufficient instrument resolution to guide the component peak structure (even with a high resolution instrument). A simple peak width analysis and correlation work with C KLL D value confirmed the errors. The use of XPS for Sp3/Sp2 was therefore limited to initial tentative estimations. Nanoindentation was shown to provide consistent hardness and reduced modulus results with depth (to < 7nm) when replicate data was suitably statistically processed. No significant pile-up or cracking of the films was identified under nanoindentation. Nanowear experimentation by multiple nanoscratching provided some useful information, however the conditions of test were very different to those expect for MEMS and micro- / nano-engineering systems. A novel 'sample oscillated nanoindentation' system was developed for testing nanowear under more relevant conditions. The films were produced in an industrial production coating line. In order to maximise the available information and to take account of uncontrolled process variation a statistical design of experiment procedure was used to investigate the effect of four key process control parameters. Cr doping was the most significant control parameter at all thicknesses tested and produced a softening effect and thus increased nanowear. Substrate bias voltage was also a significant parameter and produced hardening and a wear reducing effect at all thicknesses tested. The use of a Cr adhesion layer produced beneficial results at 150 nm thickness, but was ineffective at 50 nm. Argon flow to the coating chamber produced a complex effect. All effects reduced significantly with reducing film thickness. Classic fretting wear was produced at low amplitude under nanowear testing. Reciprocating sliding was produced at higher amplitude which generated three body abrasive wear and this was generally consistent with the Archard model. Specific wear rates were very low (typically 10-16 - 10-18 m3N-1m-1). Wear rates reduced exponentially with reduced film thickness and below (approx.) 20 nm, thickness was identified as the most important control of wear.
Resumo:
Coleridge, looking back at the end of the ‘long eighteenth century’, remarked that the whole of natural philosophy had been ‘electrified’ by advances in the understanding of electrical phenomena. In this paper I trace the way in which these advances affected contemporary ‘neurophysiology.’ At the beginning of the long eighteenth century, neurophysiology (in spite of Swammerdam’s and Glisson’s demonstrations to the contrary) was still understood largely in terms of hollow nerves and animal spirits. At the end of that period the researches of microscopists and electricians had convinced most medical men that the old understanding had to be replaced. Walsh, Patterson, John Hunter and others had described the electric organs of electric fish. Gray and Nollet had demonstrated that electricity was not merely static, but flowed. Franklin had alerted the world to atmospheric electricity. Galvani’s frog experiments were widely known. Volta had invented his ‘pile.’ But did ‘animal electricity’ exist and was it identical to the electricity physicists studied in the inanimate world? Was the brain a gland, as Malpighi’s researches seemed to confirm., and did it secrete electricity into the nervous system? The Monros (primus and secundus), William Cullen, Luigi Galvani, Alessandro Volta, Erasmus Darwin, Luigi Rolando and François Baillarger all had their own ideas. This paper reviews these ‘long-eighteenth century’ controversies with special reference to the Edinburgh medical school and the interaction between neurophysiology and physics.
Resumo:
This work concerns the developnent of a proton irduced X-ray emission (PIXE) analysis system and a multi-sample scattering chamber facility. The characteristics of the beam pulsing system and its counting rate capabilities were evaluated by observing the ion-induced X-ray emission from pure thick copper targets, with and without beam pulsing operation. The characteristic X-rays were detected with a high resolution Si(Li) detector coupled to a rrulti-channel analyser. The removal of the pile-up continuum by the use of the on-demand beam pulsing is clearly demonstrated in this work. This new on-demand pu1sirg system with its counting rate capability of 25, 18 and 10 kPPS corresponding to 2, 4 am 8 usec main amplifier time constant respectively enables thick targets to be analysed more readily. Reproducibility tests of the on-demard beam pulsing system operation were checked by repeated measurements of the system throughput curves, with and without beam pulsing. The reproducibility of the analysis performed using this system was also checked by repeated measurements of the intensity ratios from a number of standard binary alloys during the experimental work. A computer programme has been developed to evaluate the calculations of the X-ray yields from thick targets bornbarded by protons, taking into account the secondary X-ray yield production due to characteristic X-ray fluorescence from an element energetically higher than the absorption edge energy of the other element present in the target. This effect was studied on metallic binary alloys such as Fe/Ni and Cr/Fe. The quantitative analysis of Fe/Ni and Cr/Fe alloy samples to determine their elemental composition taking into account the enhancement has been demonstrated in this work. Furthermore, the usefulness of the Rutherford backscattering (R.B.S.) technique to obtain the depth profiles of the elements in the upper micron of the sample is discussed.