15 resultados para Boolean satisfiability

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random Boolean formulae, generated by a growth process of noisy logical gates are analyzed using the generating functional methodology of statistical physics. We study the type of functions generated for different input distributions, their robustness for a given level of gate error and its dependence on the formulae depth and complexity and the gates used. Bounds on their performance, derived in the information theory literature for specific gates, are straightforwardly retrieved, generalized and identified as the corresponding typical-case phase transitions. Results for error-rates, function-depth and sensitivity of the generated functions are obtained for various gate-type and noise models. © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generating functional method is employed to investigate the synchronous dynamics of Boolean networks, providing an exact result for the system dynamics via a set of macroscopic order parameters. The topology of the networks studied and its constituent Boolean functions represent the system's quenched disorder and are sampled from a given distribution. The framework accommodates a variety of topologies and Boolean function distributions and can be used to study both the noisy and noiseless regimes; it enables one to calculate correlation functions at different times that are inaccessible via commonly used approximations. It is also used to determine conditions for the annealed approximation to be valid, explore phases of the system under different levels of noise and obtain results for models with strong memory effects, where existing approximations break down. Links between Boolean networks and general Boolean formulas are identified and results common to both system types are highlighted. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computing circuits composed of noisy logical gates and their ability to represent arbitrary Boolean functions with a given level of error are investigated within a statistical mechanics setting. Existing bounds on their performance are straightforwardly retrieved, generalized, and identified as the corresponding typical-case phase transitions. Results on error rates, function depth, and sensitivity, and their dependence on the gate-type and noise model used are also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the generating functional method. A general formulation, suitable for BN with any distribution of Boolean functions, is developed. It provides exact solutions and insight into the evolution of order parameters and properties of the stationary states, which are inaccessible via existing methodology. We identify cases where the commonly used annealed approximation is valid and others where it breaks down. Broader links between BN and general Boolean formulas are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study noisy computation in randomly generated k-ary Boolean formulas. We establish bounds on the noise level above which the results of computation by random formulas are not reliable. This bound is saturated by formulas constructed from a single majority-like gate. We show that these gates can be used to compute any Boolean function reliably below the noise bound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Error rates of a Boolean perceptron with threshold and either spherical or Ising constraint on the weight vector are calculated for storing patterns from biased input and output distributions derived within a one-step replica symmetry breaking (RSB) treatment. For unbiased output distribution and non-zero stability of the patterns, we find a critical load, α p, above which two solutions to the saddlepoint equations appear; one with higher free energy and zero threshold and a dominant solution with non-zero threshold. We examine this second-order phase transition and the dependence of α p on the required pattern stability, κ, for both one-step RSB and replica symmetry (RS) in the spherical case and for one-step RSB in the Ising case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We employ the methods of statistical physics to study the performance of Gallager type error-correcting codes. In this approach, the transmitted codeword comprises Boolean sums of the original message bits selected by two randomly-constructed sparse matrices. We show that a broad range of these codes potentially saturate Shannon's bound but are limited due to the decoding dynamics used. Other codes show sub-optimal performance but are not restricted by the decoding dynamics. We show how these codes may also be employed as a practical public-key cryptosystem and are of competitive performance to modern cyptographical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fault tree analysis is used as a tool within hazard and operability (Hazop) studies. The present study proposes a new methodology for obtaining the exact TOP event probability of coherent fault trees. The technique uses a top-down approach similar to that of FATRAM. This new Fault Tree Disjoint Reduction Algorithm resolves all the intermediate events in the tree except OR gates with basic event inputs so that a near minimal cut sets expression is obtained. Then Bennetts' disjoint technique is applied and remaining OR gates are resolved. The technique has been found to be appropriate as an alternative to Monte Carlo simulation methods when rare events are countered and exact results are needed. The algorithm has been developed in FORTRAN 77 on the Perq workstation as an addition to the Aston Hazop package. The Perq graphical environment enabled a friendly user interface to be created. The total package takes as its input cause and symptom equations using Lihou's form of coding and produces both drawings of fault trees and the Boolean sum of products expression into which reliability data can be substituted directly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtained an analytical expression for the computational complexity of many layered committee machines with a finite number of hidden layers (L < 8) using the generalization complexity measure introduced by Franco et al (2006) IEEE Trans. Neural Netw. 17 578. Although our result is valid in the large-size limit and for an overlap synaptic matrix that is ultrametric, it provides a useful tool for inferring the appropriate architecture a network must have to reproduce an arbitrary realizable Boolean function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designers of self-adaptive systems often formulate adaptive design decisions, making unrealistic or myopic assumptions about the system's requirements and environment. The decisions taken during this formulation are crucial for satisfying requirements. In environments which are characterized by uncertainty and dynamism, deviation from these assumptions is the norm and may trigger 'surprises'. Our method allows designers to make explicit links between the possible emergence of surprises, risks and design trade-offs. The method can be used to explore the design decisions for self-adaptive systems and choose among decisions that better fulfil (or rather partially fulfil) non-functional requirements and address their trade-offs. The analysis can also provide designers with valuable input for refining the adaptation decisions to balance, for example, resilience (i.e. Satisfiability of non-functional requirements and their trade-offs) and stability (i.e. Minimizing the frequency of adaptation). The objective is to provide designers of self adaptive systems with a basis for multi-dimensional what-if analysis to revise and improve the understanding of the environment and its effect on non-functional requirements and thereafter decision-making. We have applied the method to a wireless sensor network for flood prediction. The application shows that the method gives rise to questions that were not explicitly asked before at design-time and assists designers in the process of risk-aware, what-if and trade-off analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.