4 resultados para Bone Mineral

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect. The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes. Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g. amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body and assess the stimulation levels are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of oxidation in the development of age-related eye disease has prompted interest in the use of nutritional supplementation for prevention of onset and progression. Our aim is to highlight possible contraindications and adverse reactions of isolated or high dose ocular nutritional supplements. Web of Science and PubMed database searches were carried out, followed by a manual search of the bibliographies of retrieved articles. Vitamin A should be avoided in women who may become pregnant, in those with liver disease, and in people who drink heavily. Relationships have been found between vitamin A and reduced bone mineral density, and beta-carotene and increased risk of lung cancer in smoking males. Vitamin E and Ginkgo biloba have anticoagulant and anti-platelet effects respectively, and high doses are contraindicated in those being treated for vascular disorders. Those patients with contraindications or who are considered at risk of adverse reactions should be advised to seek specialist dietary advice via their medical practitioner. © 2005 The College of Optometrists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work described in this thesis is the development of an ultrasonic tomogram to provide outlines of cross-sections of the ulna in vivo. This instrument, used in conjunction with X-ray densitometry previously developed in this department, would provide actual bone mineral density to a high resolution. It was hoped that the accuracy of the plot obtained from the tomogram would exceed that of existing ultrasonic techniques by about five times. Repeat measurements with these instruments to follow bone mineral changes would involve very low X-ray doses. A theoretical study has been made of acoustic diffraction, using a geometrical transform applicable to the integration of three different Green's functions, for axisymmetric systems. This has involved the derivation of one of these in a form amenable to computation. It is considered that this function fits the boundary conditions occurring in medical ultrasonography more closely than those used previously. A three dimensional plot of the pressure field using this function has been made for a ring transducer, in addition to that for disc transducers using all three functions. It has been shown how the theory may be extended to investigate the nature and magnitude of the particle velocity, at any point in the field, for the three functions mentioned. From this study. a concept of diffraction fronts has been developed, which has made it possible to determine energy flow also in a diffracting system. Intensity has been displayed in a manner similar to that used for pressure. Plots have been made of diffraction fronts and energy flow direction lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates a novel approach to characterizing hydrated bone's viscoelastic behavior at lamellar length scales using dynamic indentation techniques. We studied the submicron-level viscoelastic response of bone tissue from two different inbred mouse strains, A/J and B6, with known differences in whole bone and tissue-level mechanical properties. Our results show that bone having a higher collagen content or a lower mineral-to-matrix ratio demonstrates a trend towards a larger viscoelastic response. When normalized for anatomical location relative to biological growth patterns in the antero-medial (AM) cortex, bone tissue from B6 femora, known to have a lower mineral-to-matrix ratio, is shown to exhibit a significantly higher viscoelastic response compared to A/J tissue. Newer bone regions with a higher collagen content (closer to the endosteal edge of the AM cortex) showed a trend towards a larger viscoelastic response. Our study demonstrates the feasibility of this technique for analyzing local composition-property relationships in bone. Further, this technique of viscoelastic nanoindentation mapping of the bone surface at these submicron length scales is shown to be highly advantageous in studying subsurface features, such as porosity, of wet hydrated biological specimens, which are difficult to identify using other methods. © 2010 Elsevier Ltd.