10 resultados para Bonafede, Niccolò, bp. of Chiusi, b.ca.1464-
em Aston University Research Archive
Resumo:
Corpora amylacea (CA) are spherical or ovoid bodies 50-50 microns in diameter. They have been described in normal elderly brain as well as in a number of neurodegenerative disorders. In this study, the incidence of CA in the optic nerves of Alzheimer's disease (AD) patients was compared with normal elderly controls. Samples of optic nerves (MRC Brain Bank, Institute of Psychiatry) were taken from 12 AD patients (age range 69-94 years) and 18 controls (43-82 years). Optic nerves were fixed in 2% buffered glutaraldehyde, post-fixed in osmium tetroxide, embedded in epoxy resin and then sectioned to a thickness of 2 microns. Sections were stained with toluidine blue. CA were present in all of the optic nerves examined. In addition, a number of similarly stained but more irregularly shaped bodies were present. Fewer CA were found in the optic nerves of AD patients compared with controls. By contrast, the number or irregularly shaped bodies was increased in AD. In AD, there may be a preferential decline in the large diameter fibres which may mediate the M-cell pathway. Hence, the decline in the incidence of CA in AD may be associated with a reduction in these fibres. It is also possible that the irregualrly shaped bodies are a degeneration product of the CA.
Resumo:
There is a clinical need for a more effective vaccine against hepatitis B, and in particular vaccines that may be suitable for therapeutic administration. This study assesses the potential of cationic surfactant vesicle based formulations using two agents; the cationic amine containing [N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) or dimethyl dioctadecylammonium bromide (DDA) with hepatitis B surface antigen (HBsAg). Synthetic mycobacterial cord factor, trehalose 6,6′-dibehenate (TDB) has been used as an adjuvant and the addition of 1-monopalmitoyl glycerol (C16:0) (MP) and cholesterol (Chol) to DDA-TDB is assessed for its potential to facilitate formation of dehydration-rehydration vesicles (DRV) at room temperature, and the effect of this on immune responses. A DRV formulation is directly compared to an adsorbed formulation of the same composition and preparation protocol (MP:dioleoyl phosphoethanolamine (DOPE):Chol:DC-Chol) and the direct substitution of MP with phosphatidylcholine (PC) is also compared in DRV antigen-entrapped formulations. MP and Chol were shown to facilitate the use of DDA-TDB in DRV formulations prepared at room temperature, whilst there was marginal alteration of immunogenicity (a reduction in HBsAg-specific IL-2). The HBsAg adsorbed DRV formulation was not significantly different from the HBsAg entrapped DRV formulation. Overall, DDA formulations incorporating TDB showed markedly increased antigen specific splenocyte proliferation and elicited cytokine production concomitant with a strong T cell driven response, delineating formulations that may be useful for further evaluation of their clinical potential. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia.
Resumo:
Objective: Loss of skeletal muscle is the most debilitating feature of cancer cachexia, and there are few treatments available. The aim of this study was to compare the anticatabolic efficacy of L-leucine and the leucine metabolite β-hydroxy-β-methylbutyrate (Ca-HMB) on muscle protein metabolism, both invitro and invivo. Methods: Studies were conducted in mice bearing the cachexia-inducing murine adenocarcinoma 16 tumor, and in murine C2 C12 myotubes exposed to proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. Results: Both leucine and HMB were found to attenuate the increase in protein degradation and the decrease in protein synthesis in murine myotubes induced by proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. However, HMB was more potent than leucine, because HMB at 50 μM produced essentially the same effect as leucine at 1 mM. Both leucine and HMB reduced the activity of the ubiquitin-proteasome pathway as measured by the functional (chymotrypsin-like) enzyme activity of the proteasome in muscle lysates, as well as Western blot quantitation of protein levels of the structural/enzymatic proteasome subunits (20 S and 19 S) and the ubiquitin ligases (MuRF1 and MAFbx). Invivo studies in mice bearing the murine adenocarcinoma 16 tumor showed a low dose of Ca-HMB (0.25 g/kg) tobe 60% more effective than leucine (1 g/kg) in attenuating loss of body weight over a 4-d period. Conclusion: These results favor the clinical feasibility of using Ca-HMB over high doses of leucine for the treatment of cancer cachexia. © 2014 Elsevier Inc.
Resumo:
Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin-proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα, proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin-proteasome pathway, as determined by 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSSI and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin-proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB. © 2005 Cancer Research UK.
Resumo:
Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C 2C12 myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 205 proteasome α-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 μM). At a concentration of 4 nM, PIF induced a transient decrease in IκBα levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IκBα, an NF-κB inhibitory protein, returned to normal after 60 min. Depletion of IκBα from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-κB/IκB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-κB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-κB inhibitor peptide SN50, suggesting that NF-κB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-κB accumulation in the nucleus. © 2003 Cancer Research UK.
Resumo:
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. There have been few systematic studies of the ECLs (extracellular loops) of family B GPCRs. However, they are likely to be especially important for the interaction of the N-termini of the peptide agonists that are the natural agonists for these receptors. We have carried out alanine scans on all three ECLs of CLR, as well as their associated juxtamembrane regions. Residues within all three loops influence CGRP binding and receptor activation. Mutation of Ala203 and Ala206 on ECL1 to leucine increased the affinity of CGRP. Residues at the top of TM (transmembrane) helices 2 and 3 influenced CGRP binding and receptor activation. L351A and E357A in TM6/ECL3 reduced receptor expression and may be needed for CLR association with RAMP1. ECL2 seems especially important for CLR function; of the 16 residues so far examined in this loop, eight residues reduce the potency of CGRP at stimulating cAMP production when mutated to alanine.
Resumo:
Adjuvant arthritis (AA) was induced by intradermal administration of Mycobacterium butyricum to the tail of Lewis rats. In sarcoplasmic reticulum (SR) of skeletal muscles, we investigated the development of AA. SR Ca(2+)-ATPase (SERCA) activity decreased on day 21, suggesting possible conformational changes in the transmembrane part of the enzyme, especially at the site of the calcium binding transmembrane part. These events were associated with an increased level of protein carbonyls, a decrease in cysteine SH groups, and alterations in SR membrane fluidity. There was no alteration in the nucleotide binding site at any time point of AA, as detected by a FITC fluorescence marker. Some changes observed on day 21 appeared to be reversible, as indicated by SERCA activity, cysteine SH groups, SR membrane fluidity, protein carbonyl content and fluorescence of an NCD-4 marker specific for the calcium binding site. The reversibility may represent adaptive mechanisms of AA, induced by higher relative expression of SERCA, oxidation of cysteine, nitration of tyrosine and presence of acidic phospholipids such as phosphatidic acid. Nitric oxide may regulate cytoplasmic Ca(2+) level through conformational alterations of SERCA, and decreasing levels of calsequestrin in SR may also play regulatory role in SERCA activity and expression.
Resumo:
Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-κB pathway. This stimulation was associated with a significant reduction in basal levels of NF-κB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin.