6 resultados para Body measurements
em Aston University Research Archive
Resumo:
Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes (N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05). Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.
Resumo:
Through a lumped parameter modelling approach, a dynamical model, which can reproduce the motion of the muscles of a human body standing in different postures during Whole Body Vibrations (WBVs) treatment, has been developed. The key parameters, associated to the dynamics of the motion of the muscles of the lower limbs, have been identified starting from accelerometer measurements. The developed model can be usefully applied to the optimization of WBVs treatments which can effectively enhance muscle activation. © 2013 IEEE.
Resumo:
The impact of whole body vibrations (vibration stimulus mechanically transferred to the body) on muscular activity and neuromuscular response has been widely studied but without standard protocol and by using different kinds of exercises and parameters. In this study, we investigated how whole body vibration treatments affect electromyographic signal of rectus femoris during static and dynamic squat exercises. The aim was the identification of squat exercise characteristics useful to maximize neuromuscular activation and hence progress in training efficacy. Fourteen healthy volunteers performed both static and dynamic squat exercises without and with vibration treatments. Surface electromyographic signals of rectus femoris were recorded during the whole exercise and processed to reduce artifacts and to extract root mean square values. Paired t-test results demonstrated an increase of the root mean square values (p<0.05) in both static and dynamic squat exercises with vibrations respectively of 63% and 108%. For each exercise, subjects gave a rating of the perceived exertion according to the Borg's scale but there were no significant changes in the perceived exertion rate between exercises with and without vibration. Finally, results from analysis of electromyographic signals identified the static squat with WBV treatment as the exercise with higher neuromuscular system response. © 2012 IEEE.
Resumo:
Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.
Resumo:
Aims: Obesity and Type 2 diabetes are associated with accelerated ageing. The underlying mechanisms behind this, however, are poorly understood. In this study, we investigated the association between circulating irisin - a novel my okine involved in energy regulation - and telomere length (TL) (a marker of aging) in healthy individuals and individuals with Type 2 diabetes. Methods: Eighty-two healthy people and 67 subjects with Type 2 diabetes were recruited to this cross-sectional study. Anthropometric measurements including body composition measured by biompedance were recorded. Plasma irisin was measured by ELISA on a fasted blood sample. Relative TL was determined using real-time PCR. Associations between anthropometric measures and irisin and TL were explored using Pearson’s bivariate correlations. Multiple regression was used to explore all the significant predictors of TL using backward elimination. Results: In healthy individuals chronological age was a strong negative predictor of TL (=0.552, p < 0.001). Multiple regression analysis using backward elimination (excluding age) revealed the greater relative TL could be predicted by greater total muscle mass(b = 0.046, p = 0.001), less visceral fat (b = =0.183, p < 0.001)and higher plasma irisin levels (b = 0.01, p = 0.027). There were no significant associations between chronological age, plasmairisin, anthropometric measures and TL in patients with Type 2diabetes (p > 0.1). Conclusion: These data support the view that body composition and plasma irisin may have a role in modulation of energy balance and the aging process in healthy individuals. This relationship is altered in individuals with Type 2 diabetes.
Resumo:
Introduction - The present study aimed to describe characteristics of patients with type 2 diabetes (T2D) in UK primary care initiated on dapagliflozin, post-dapagliflozin changes in glycated hemoglobin (HbA1c), body weight and blood pressure, and reasons for adding dapagliflozin to insulin. Methods - Retrospective study of patients with T2D in the Clinical Practice Research Datalink with first prescription for dapagliflozin. Patients were included in the study if they: (1) had a first prescription for dapagliflozin between November 2012 and September 2014; (2) had a Read code for T2D; (3) were registered with a practice for at least 6 months before starting dapagliflozin; and (4) remained registered for at least 3 months after initiation. A questionnaire ascertained reason(s) for adding dapagliflozin to insulin. Results - Dapagliflozin was most often used as triple therapy (27.7%), dual therapy with metformin (25.1%) or added to insulin (19.2%). Median therapy duration was 329 days [95% confidence interval (CI) 302–361]. Poor glycemic control was the reason for dapagliflozin initiation for 93.1% of insulin-treated patients. Avoiding increases in weight/body mass index and insulin resistance were the commonest reasons for selecting dapagliflozin versus intensifying insulin. HbA1c declined by mean of 9.7 mmol/mol (95% CI 8.5–10.9) (0.89%) 14–90 days after starting dapagliflozin, 10.2 mmol/mol (95% CI 8.9–11.5) (0.93%) after 91–180 days and 12.6 mmol/mol (95% CI 11.0–14.3) (1.16%) beyond 180 days. Weight declined by mean of 2.6 kg (95% CI 2.3–2.9) after 14–90 days, 4.3 kg (95% CI 3.8–4.7) after 91–180 days and 4.6 kg (95% CI 4.0–5.2) beyond 180 days. In patients with measurements between 14 and 90 days after starting dapagliflozin, systolic and diastolic blood pressure decreased by means of 4.5 (95% CI −5.8 to −3.2) and 2.0 (95% CI −2.9 to −1.2) mmHg, respectively from baseline. Similar reductions in systolic and diastolic blood pressure were observed after 91–180 days and when follow-up extended beyond 180 days. Results were consistent across subgroups. Conclusion - HbA1c, body weight and blood pressure were reduced after initiation of dapagliflozin in patients with T2D in UK primary care and the changes were consistent with randomized clinical trials.