10 resultados para Body image, form perception

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and magnetoencephalography (MEG) have been the principal neuroimaging tools used to assess the site and nature of cortical deficits in human amblyopia. A review of this growing body of work is presented here with particular reference to various controversial issues, including whether or not the primary visual cortex is dysfunctional, the involvement of higher-order visual areas, neural differences between strabismic and anisometropic amblyopes, and the effects of modern-day drug treatments. We also present our own recent MEG work in which we used the analysis technique of synthetic aperture magnetometry (SAM) to examine the effects of strabismic amblyopia on cortical function. Our results provide evidence that the neuronal assembly associated with form perception in the extrastriate cortex may be dysfunctional in amblyopia, and that the nature of this dysfunction may relate to a change in the normal temporal pattern of neuronal discharges. Based on these results and existing literature, we conclude that a number of cortical areas show reduced levels of activation in amblyopia, including primary and secondary visual areas and regions within the parieto-occipital cortex and ventral temporal cortex. Copyright © 2006 Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarize the various strands of research on peripheral vision and relate them to theories of form perception. After a historical overview, we describe quantifications of the cortical magnification hypothesis, including an extension of Schwartz's cortical mapping function. The merits of this concept are considered across a wide range of psychophysical tasks, followed by a discussion of its limitations and the need for non-spatial scaling. We also review the eccentricity dependence of other low-level functions including reaction time, temporal resolution, and spatial summation, as well as perimetric methods. A central topic is then the recognition of characters in peripheral vision, both at low and high levels of contrast, and the impact of surrounding contours known as crowding. We demonstrate how Bouma's law, specifying the critical distance for the onset of crowding, can be stated in terms of the retinocortical mapping. The recognition of more complex stimuli, like textures, faces, and scenes, reveals a substantial impact of mid-level vision and cognitive factors. We further consider eccentricity-dependent limitations of learning, both at the level of perceptual learning and pattern category learning. Generic limitations of extrafoveal vision are observed for the latter in categorization tasks involving multiple stimulus classes. Finally, models of peripheral form vision are discussed. We report that peripheral vision is limited with regard to pattern categorization by a distinctly lower representational complexity and processing speed. Taken together, the limitations of cognitive processing in peripheral vision appear to be as significant as those imposed on low-level functions and by way of crowding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarize the various strands of research on peripheral vision and relate them to theories of form perception. After a historical overview, we describe quantifications of the cortical magnification hypothesis, including an extension of Schwartz's cortical mapping function. The merits of this concept are considered across a wide range of psychophysical tasks, followed by a discussion of its limitations and the need for non-spatial scaling. We also review the eccentricity dependence of other low-level functions including reaction time, temporal resolution, and spatial summation, as well as perimetric methods. A central topic is then the recognition of characters in peripheral vision, both at low and high levels of contrast, and the impact of surrounding contours known as crowding. We demonstrate how Bouma's law, specifying the critical distance for the onset of crowding, can be stated in terms of the retinocortical mapping. The recognition of more complex stimuli, like textures, faces, and scenes, reveals a substantial impact of mid-level vision and cognitive factors. We further consider eccentricity-dependent limitations of learning, both at the level of perceptual learning and pattern category learning. Generic limitations of extrafoveal vision are observed for the latter in categorization tasks involving multiple stimulus classes. Finally, models of peripheral form vision are discussed. We report that peripheral vision is limited with regard to pattern categorization by a distinctly lower representational complexity and processing speed. Taken together, the limitations of cognitive processing in peripheral vision appear to be as significant as those imposed on low-level functions and by way of crowding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Breast cancer diagnosis and treatments can have a profound impact upon women's well-being, body image, and sexual functioning, but less is known about the relational context of their coping and the impact upon their intimate partners. Our study focuses upon couples' experiences of breast cancer surgery, and its impact on body image and sexual intimacy. METHOD: Utilizing a dyadic design, we conducted 8 semistructured individual interviews, with 4 long-term heterosexual couples, after the women had undergone mastectomy with reconstruction. Interviews explored both partners' experiences of diagnosis, decision-making, and experiences of body image and sexual intimacy. Interpretative phenomenological analysis (IPA) was adopted; this is a qualitative research approach characterized by in-depth analysis of the personal meaning of experiences. RESULTS: Findings illustrate the positive acceptance that partners may express toward their wives' postsurgical bodies. They illuminate ways in which gendered coping styles and normative sexual scripts may shape couples' negotiations of intimacy around "altered embodiment." Reciprocal communication styles were important for couples' coping. The management of expectations regarding breast reconstruction may also be helpful. CONCLUSIONS: The insights from the dyadic, multiple perspective design suggest that psychologists must situate the meaning of supportive relationships and other protective factors in the context of complex life events and histories, in order to understand and support people's developing responses to distress. (PsycINFO Database Record

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Excessive consumption of dietary fat is acknowledged to be a widespread problem linked to a range of medical conditions. Despite this, little is known about the specific sensory appeal held by fats and no previous published research exists concerning human perception of non-textural taste qualities in fats. This research aimed to address whether a taste component can be found in sensory perception of pure fats. It also examined whether individual differences existed in human taste responses to fat, using both aggregated data analysis methods and multidimensional scaling. Results indicated that individuals were able to detect both the primary taste qualities of sweet, salty, sour and bitter in pure processed oils and reliably ascribe their own individually-generated taste labels, suggested that a taste component may be present in human responses to fat. Individual variation appeared to exist, both in the perception of given taste qualities and in perceived intensity and preferences. A number of factors were examined in relation to such individual differences in taste perception, including age, gender, genetic sensitivity to 6-n-propylthiouracil, body mass, dietary preferences and intake, dieting behaviours and restraint. Results revealed that, to varying extents, gender, age, sensitivity to 6-n-propylthiouracil, dietary preferences, habitual dietary intake and restraint all appeared to be related to individual variation in taste responses to fat. However, in general, these differences appeared to exist in the form of differing preferences and levels of intensity with which taste qualities detected in fat were perceived, as opposed to the perception of specific taste qualities being associated with given traits or states. Equally, each of these factors appeared to exert only a limited influence upon variation in sensory responses and thus the potential for using taste responses to fats as a marker for issues such as over-consumption, obesity or eating disorder is at present limited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the effect of posture congruence on social perception. Specifically, we tested the hypothesis that completing "body gestalts," rather than being a purely visual process, is mediated by congruence in the postures of observer and stimulus. We developed novel stimuli showing a face and 2 hands that could be combined in various ways to form "body gestalts" implying different postures. In 3 experiments we found that imitative finger movements were consistently faster when the observer's posture matched the posture implied by the configuration of face and hands shown onscreen, suggesting that participants intuitively used their own body schema to "fill in the gaps" in the stimuli. Besides shaping how humans perceive others' bodies, embodied body-gestalt (eBG) completion may be an essential social and survival mechanism, for example, allowing for quick recovery from deceptive actions. It may also partly explain why humans subconsciously align themselves in everyday interactions: This might facilitate optimal corepresentation at higher, conscious levels. © 2012 American Psychological Association.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

How are the image statistics of global image contrast computed? We answered this by using a contrast-matching task for checkerboard configurations of ‘battenberg’ micro-patterns where the contrasts and spatial spreads of interdigitated pairs of micro-patterns were adjusted independently. Test stimuli were 20 × 20 arrays with various sized cluster widths, matched to standard patterns of uniform contrast. When one of the test patterns contained a pattern with much higher contrast than the other, that determined global pattern contrast, as in a max() operation. Crucially, however, the full matching functions had a curious intermediate region where low contrast additions for one pattern to intermediate contrasts of the other caused a paradoxical reduction in perceived global contrast. None of the following models predicted this: RMS, energy, linear sum, max, Legge and Foley. However, a gain control model incorporating wide-field integration and suppression of nonlinear contrast responses predicted the results with no free parameters. This model was derived from experiments on summation of contrast at threshold, and masking and summation effects in dipper functions. Those experiments were also inconsistent with the failed models above. Thus, we conclude that our contrast gain control model (Meese & Summers, 2007) describes a fundamental operation in human contrast vision.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The principal theme of this thesis is the effect of yoked prisms on body posture and egocentric perception. Yoked prisms have been clinically used in the management of a variety of visual and neuro-motor dysfunctions. Most studies have been conducted in pathological populations by studying the effects of prismatic adaptation, without distinguishing short and long term effects. In this study, postural and perceptual prismatic effects have been studied by preventing prism adaptation. A healthy population was selected in order to investigate the immediate prismatic effects, when there is no obvious benefit from their use for the individual. Posturography was used to assess changes in weight distribution and shifts in centre of pressure (barycentre). In addition, photographic analyses were used to assess effects on posture on the x and z axis. Experiments with space board and visual midline shift were used for the evaluation of spatial perception and egocentric localisation. One pair of 8 Δ yoked prisms base left (BL) and one pair of 8 Δ yoked prisms base up (BU) were applied randomly and compared to a pair of plano lenses. Results suggest that immediate prismatic effects take place on a perceptual level and are reflected on an altered body posture respectively without significant changes in weight distribution. Yoked prisms BL showed a rightward rotational effect on spatial perception by expanding space on the z axis when viewing through the base of the prism and constricting space through the apex of the prism. Body posture responded respectively to what was visually perceived by altering posture. A rightward shift and tilt of the head was recorded along with the hips shift and shoulders tilt in the dame direction. Additionally, right shoulder shifted backwards and an angular midline shift to the right was recorded. The egocentric localisation was affected by shifting the midline perception to the left. Yoked prisms BU resulted on a head shift forward and a reduction of the head-neck angle by bringing the chin closer to the chest. The egocentric localisation was altered on the vertical axis providing subjects the perception that their eye level was higher during the experiment. In conclusion, yoked prisms seemed to induce changes in body posture, mainly in the upper body and head, without any significant changes in weight distribution. These changes are partially reflected in spatial perception tests and egocentric localisation before any prismatic adaptation takes place.