11 resultados para Block random copolymers
em Aston University Research Archive
Resumo:
The kinetics and mechanisms of the ring-opening polymerization of oxetane were studied using cationic and coordinated anionic catalysts. The cationic initiators used were BF30Et2!/ethanol, BF30Et2!/ethanediol and BF30Et2/propantriol. Kinetic determinations with the BF30Et2/diol system indicated that a 1: 1 BF3:0H ratio gave the maximum rate of polymerization and this ratio was employed to detenmne the overall rates of polymerization. An overall second-order dependence was obtained when the system involved ethanediol or propantriol as co-catalyst and a 3/2-order dependence with ethanol, in each case the monomer gave a first-order relationship. This suggested that two mechanisms accounted for the cationic polymerization. These mechanisms were investigated and further evidence for these was obtained from the study of the complex formation of BF30Et2 and the co-catalysts by 1H NMR. Molecular weight studies (using size-exclusion chromatography) indicated that the hydroxyl ion acted as a chain transfer reagent when the [OH] > [BF3]. A linear relationship was observed when the number average molecular weight was plotted against [oxetane] at constant [BF3:0H], and similarly a linear dependency was observed on the BF3:0H 1:1 adduct at constant oxetane concentration. Copolymerization of oxetane and THF was carried out using BF30Et2/ethanol system. The reactivity ratios were calculated as rOXT = 1.2 ± 0.30 and rTHF = 0.14 ± 0.03. These copolymers were random copolymers with no evidence of oligomer formation. The coordinated anionic catalyst, porphinato-aluminium chloride [(TPP)AICl], was used to produce a living polymerization of oxetane. An overall third-order kinetics was obtained, with a second-order with respect to the [(TPP)AICl] and a first-order with respect to the [oxetane] and a mechanism was postulated using these results. The stereochemistry of [(TPP)AlCl] catalyst was investigated using cyclohexene and cyclopentene oxide monomers, using extensive 1H NMR, 2-D COSY and decoupling NMR techniques it was concluded that [(TPP)AlCl] gave rise to stereoregular polymers.
Resumo:
Block copolymers are versatile designer macromolecules where a “bottom-up” approach can be used to create tailored materials with unique properties. These simple building blocks allow us to create actuators that convert energy from a variety of sources (such as chemical, electrical and heat) into mechanical energy. In this review we will discuss the advantages and potential pitfalls of using block copolymers to create actuators, putting emphasis on the ways in which these materials can be synthesised and processed. Particular attention will be given to the theoretical background of microphase separation and how the phase diagram can be used during the design process of actuators. Different types of actuation will be discussed throughout.
Resumo:
p-Conjugated block copolymers have been prepared from terminal azide functionalized polystyrenes (PS) and alkyne functionalized poly(3- hexylthiophene)s (P3HT) via a copper(I) catalyzed Huisgen [3 + 2] dipolar cycloaddition reaction. The functionalized a-azido-PS homopolymer was prepared by atom transfer radical polymerization from a specifically designed initiator bearing the azide function, whereas ?-ethynyl-P3HT and a,?-pentynyl-P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignard derivatives. The electronic environment of the alkynyl end groups was shown to be decisive in determining triazole ring formation.
Resumo:
A study has been made of the anionic polymerisation of methyl methacrylate using butyllithium and polystyryl lithium as initiators and the effects of lithium chloride and aluminium alkyls on the molecular weight and molecular weight distributions. Diblock copolymers of styrene-b-methyl methacrylate were synthesised at -78oC in THF in the presence of lithium chloride, and at ambient temperatures in toluene in the presence of aluminium alkyls. Studies in the presence of lithium chloride showed that the polymerisation was difficult to control; there was no conclusive evidence of a living system and the polydispersity indices were between 1.5 and 3. However, using relatively apolar solvents, in the presence of aluminium alkyls, homopolymerisation of methyl methacrylate showed characteristics of a living polymerisation. An investigation of the effects of the structures of the lithium and aluminium alkyls on the efficiency of initiation showed that a t-butyllithium/triisobutylaluminium initiating system exhibited an efficiency of 80%, compared with lower efficiencies (typically 30%) for systems based on butyllithium/triethylaluminium.The polydispersity index was found to decrease from ∼2.2 to ∼1.5 when butyllithium was replaced by t-butyllithium. The efficiency of the initiator was found to be solely dependent on the size of the alkyl group of the aluminium component, whereas the polydispersity index was found to be solely dependent on the size of the alkyl group on the lithium component. The aluminium alkyl is thought to be co-ordinated to the ester carbonyl groups of both the monomer and polymer. There is a critical degree of polymerisation, at which point the rate of polymerisation decreases, which probably relates to a change in structure of the active chain end. Characterisation of poly(styrene )-b-poly(4-vinylpyridine) and poly(styrene)-b-poly(4-vinylpyridine methyl iodide) diblock copolymers using static light scattering techniques, showed the formation of star-shaped 'reverse' micelles when placed in toluene. Temperature effects on micellization behaviour are only exhibited for the unquaternised micelles, which showed characterisically lower aggregation numbers than their quaternised counterparts. A suitable solvent was not obtained for characterisation of the styrene-b-methyl methacrylate diblock copolymers synthesized.
Resumo:
The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).
Resumo:
Poly(ethylene oxide) has been coupled to poly(3-hexylthiophene) using esterification to produce pure diblock copolymers, highly relevant for use in organic electronic devices. The new synthetic route described herein uses a metal-free coupling step, for the first time, to afford well-defined polymers in high yields following facile purification.
Resumo:
A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.
Resumo:
Poly(styrene)-block-poly(2-vinyl pyridine)-block-poly(styrene) (PS-b-P2VP-b-PS) triblock copolymers were synthesised by anionic polymerisation. Thick films were cast from solution and their structure analysed by small angle X-ray scattering (SAXS). Longer annealing times led to more ordered structures whereas short evaporation times effectively "lock" the polymer chains in a disordered state by vitrification. Well-ordered structures not only provide an isotropic network, which reduces localised stress within the material, but are also essential for fundamental studies of soft matter because their activity on the molecular scale must be analysed and understood prior to their use in technological applications. Well-characterised PS-b-P2VP-b-PS materials have been coupled to a pH-oscillating reaction and their potential application as responsive actuators is discussed. This journal is © The Royal Society of Chemistry.
Resumo:
This thesis was concerned primarily with the synthesis and the ring-opening polymerisation of anhydrosulfites (1,3,2-dioxa-thiolan-4-one-2-oxides), and secondly with the copolymerisation of anhydrosulfites with -caprolactone. The polyesters and copolyesters synthesised are of considerable interest in medical applications and also for use as environmental friendly packaging. A range of anhydrosulfites were prepared according to an established method. Aliphatic anhydrosulfites were obtained with a level of purity satisfactory for polymerisation whereas aromatic anhydrosulfites decomposed during distillation and purification by chromatographic techniques. Aliphatic anhydrosulfites with a substituent, such as methyl, isopropyl, n-butyl and isobutyl were studied by NMR spectroscopy. Analysis of these spectra revealed that the five-membered anhydrosulfite ring was puckered and that when the substituent was bulky, rotations about the alkyl chains were restricted. A wide range of anionic initiators may be used to initiate anhydrosulfites. Lithium alkyls turned out to be more successful than alkali metal alkoxides and amides. The molecular weights were found to depend on the basicity of the initiator, the monomer-to-initiator ratio, the nature of the solvent and the polymerisation temperature. The molecular weight M0 of poly(L-lactic acid) ranged from (0.5 to 6)x104. Highly crystalline and purely isotactic poly(lactic acid) was synthesised from L-lactic acid anhydrosulfite (L-LAAS) whereas DL-LAAS led to an amorphous polymer with randomly distributed D-and L-lactic units. This indicated that this polymerisation was not stereoselective. However, the bulkiness of the substituent in the anhydrosulfites molecule was found to influence the stereoselectivity of the polymerisation, thus polyesters with isobutyl or n-butyl pendant group were preferentially isotactic. Block-copolymers of ε-caprolactone and several anhydrosulfites were successfully produced. Block-copolymers of LAAS with ε-caprolactone were also synthesised, but the incorporation of caprolactone units was rather small. In contrast, random copolymerisation of LAAS and ε-caprolactone led to polymers with blocky structures similar to those obtained in the block-copolymerisation of LAAS with ε-caprolactone.
Resumo:
A simple overview of the methods used and the expected benefits of block copolymers in organic photovoltaic devices is given in this review. The description of the photovoltaic process makes it clear how the detailed self-assembly properties of block copolymers can be exploited. Organic photovoltaic technology, an inexpensive, clean and renewable energy source, is an extremely promising option for replacing fossil fuels. It is expected to deliver printable devices processed on flexible substrates using high-volume techniques. Such devices, however, currently lack the long-term stability and efficiency to allow organic photovoltaics to surpass current technologies. Block copolymers are envisaged to help overcome these obstacles because of their long term structural stability and their solid-state morphology being of the appropriate dimensions to efficiently perform charge collection and transfer to electrodes.
Resumo:
A fullerene end-capped polymer-compatibilizer based on poly(3-hexylthiophene) (P3HT) was synthesized and demonstrated to have a remarkable effect on both the stability and efficiency of devices made from exemplar P3HT and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). P3HT with ethynyl chain-ends and α-azido-ω-bromo-PS were prepared via Grignard metathesis (GRIM) and atom transfer radical polymerisation, respectively. “Click” chemistry resulted in the preparation of poly(3-hexylthiophene)-block-ω-bromo-polystyrene (P3HT-b-PS-Br), and subsequent atom transfer radical addition chemistry with fullerene (C60) yielded the donor–acceptor block copolymer P3HT-b-PS-C60. Both P3HT-b-PS-Br and P3HT-b-PS-C60 were considered as compatibilizers with P3HT/PCBM blends, with the study detailing effects on active-layer morphology, device efficiency and stability. When used at low concentrations, both P3HT-b-PS-Br (1%) and P3HT-b-PS-C60 (0.5%) resulted in considerable 28% and 35% increases in efficiencies with respect to devices made from P3HT/PCBM alone. Furthermore, P3HT-b-PS-C60 (0.5%) resulted in an important improvement in device stability.