4 resultados para Blanket

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An apparatus was designed and constructed which enabled material to be melted and heated to a maximum temperature of 1000C and then flooded with a pre-heated liquid. A series of experiments to investigate the thermal interaction between molten metals (aluminium, lead and tin) and sub-cooled water were conducted. The cooling rates of the molten materials under conditions of flooding were measured with a high speed-thermocouple and recorded with a transient recorder. A simplified model for calculating heat fluxes and metal surface temperatures was developed and used. Experimental results yielded boiling heat transfer in the transition film and stable film regions of the classic boiling curve. Maximum and minimum heat fluxes were observed at nucleate boiling crisis and the Leidenfrost point respectively. Results indicate that heat transfer from molten metals to sub-cooled water is a function of temperature and coolant depth and not a direct function of the physical properties of the metals. Heat transfer in the unstable transition film boiling region suggests that boiling dynamics in this region where a stationary molten metal is under pool boiling conditions at atmospheric pressure would not initiate a fuel-coolant interaction. Low heat fluxes around the Leidenfrost point would provide efficient fuel-coolant decoupling by a stable vapour blanket to enable coarse mixing of the fuel and coolant to occur without appreciable loss of thermal energy from the fuel. The research was conducted by Gareph Boxley and was submitted for the degree of PhD at the University of Aston in Birmingham in 1980.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research employs econometric analysis on a cross section of American electricity companies in order to study the cost implications associated with unbundling the operations of integrated companies into vertically and/or horizontally separated companies. Focusing on the representative sample average firm, we find that complete horizontal and vertical disintegration resulting in the creation of separate nuclear, conventional, and hydro electric generation companies as well as a separate firm distributing power to final consumers, results in a statistically significant 13.5 percent increase in costs. Maintaining a horizontally integrated generator producing nuclear, conventional, and hydro electric generation while imposing vertical separation by creating a stand alone distribution company, results in a lower but still substantial and statistically significant cost penalty amounting to an 8.1 % increase in costs relative to a fully integrated structure. As these results imply that a vertically separated but horizontally integrated generation firm would need to reduce the costs of generation by 11% just to recoup the cost increases associated with vertical separation, even the costs associated with just vertical unbundling are quite substantial. Our paper is also the first academic paper we are aware of that systematically considers the impact of generation mix on vertical, horizontal, and overall scope economies. As a result, we are able to demonstrate that the estimated cost of unbundling in the electricity sector is substantially influenced by generation mix. Thus, for example, we find evidence of strong vertical integration economies between nuclear and conventional generation, but little evidence for vertical integration benefits between hydro generation and the distribution of power. In contrast, we find strong evidence suggesting the presence of substantial horizontal integration economies associated with the joint production of hydro generation with nuclear and/or conventional fossil fuel generation. These results are significant because they indicate that the cost of unbundling the electricity sector will differ substantially in different systems, meaning that a blanket regulatory policy with regard to the appropriateness of vertical and horizontal unbundling is likely to be inappropriate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contemporary models of contrast integration across space assume that pooling operates uniformly over the target region. For sparse stimuli, where high contrast regions are separated by areas containing no signal, this strategy may be sub-optimal because it pools more noise than signal as area increases. Little is known about the behaviour of human observers for detecting such stimuli. We performed an experiment in which three observers detected regular textures of various areas, and six levels of sparseness. Stimuli were regular grids of horizontal grating micropatches, each 1 cycle wide. We varied the ratio of signals (marks) to gaps (spaces), with mark:space ratios ranging from 1 : 0 (a dense texture with no spaces) to 1 : 24. To compensate for the decline in sensitivity with increasing distance from fixation, we adjusted the stimulus contrast as a function of eccentricity based on previous measurements [Baldwin, Meese & Baker, 2012, J Vis, 12(11):23]. We used the resulting area summation functions and psychometric slopes to test several filter-based models of signal combination. A MAX model failed to predict the thresholds, but did a good job on the slopes. Blanket summation of stimulus energy improved the threshold fit, but did not predict an observed slope increase with mark:space ratio. Our best model used a template matched to the sparseness of the stimulus, and pooled the squared contrast signal over space. Templates for regular patterns have also recently been proposed to explain the regular appearance of slightly irregular textures (Morgan et al, 2012, Proc R Soc B, 279, 2754–2760)