19 resultados para Bioplastics,Toy sector,Sustainable materials
em Aston University Research Archive
Resumo:
Purpose: The paper aims to design and prove the concept of micro-industry using trigeneration fuelled by biomass, for sustainable development in rural NW India. Design/methodology/approach: This is being tested at village Malunga, near Jodhpur in Rajasthan. The system components comprise burning of waste biomass for steam generation and its use for power generation, cooling system for fruit ripening and the use of steam for producing distilled water. Site was selected taking into account the local economic and social needs, biomass resources available from agricultural activities, and the presence of a NGO which is competent to facilitate running of the enterprise. The trigeneration system was designed to integrate off-the-shelf equipment for power generation using boilers of approximate total capacity 1 tonne of fuel per hour, and a back-pressure steam turbo-generator (200 kW). Cooling is provided by a vapour absorption machine (VAM). Findings: The financial analysis indicates a payback time of less than two years. Nevertheless, this is sensitive to market fluctuations and availabilities of raw materials. Originality/value: Although comparable trigeneration systems already exist in large food processing industries and in space heating and cooling applications, they have not previously been used for rural micro-industry. The small-scale (1-2 m3/h output) multiple effect distillation (3 effect plus condenser) unit has not previously been deployed at field level. © Emerald Group Publishing Limited.
Resumo:
In India, more than one third of the population do not currently have access to modern energy services. Biomass to energy, known as bioenergy, has immense potential for addressing India’s energy poverty. Small scale decentralised bioenergy systems require low investment compared to other renewable technologies and have environmental and social benefits over fossil fuels. Though they have historically been promoted in India through favourable policies, many studies argue that the sector’s potential is underutilised due to sustainable supply chain barriers. Moreover, a significant research gap exists. This research addresses the gap by analysing the potential sustainable supply chain risks of decentralised small scale bioenergy projects. This was achieved through four research objectives, using various research methods along with multiple data collection techniques. Firstly, a conceptual framework was developed to identify and analyse these risks. The framework is founded on existing literature and gathered inputs from practitioners and experts. Following this, sustainability and supply chain issues within the sector were explored. Sustainability issues were collated into 27 objectives, and supply chain issues were categorised according to related processes. Finally, the framework was validated against an actual bioenergy development in Jodhpur, India. Applying the framework to the action research project had some significant impacts upon the project’s design. These include the development of water conservation arrangements, the insertion of auxiliary arrangements, measures to increase upstream supply chain resilience, and the development of a first aid action plan. More widely, the developed framework and identified issues will help practitioners to take necessary precautionary measures and address them quickly and cost effectively. The framework contributes to the bioenergy decision support system literature and the sustainable supply chain management field by incorporating risk analysis and introducing the concept of global and organisational sustainability in supply chains. The sustainability issues identified contribute to existing knowledge through the exploration of a small scale and developing country context. The analysis gives new insights into potential risks affecting the whole bioenergy supply chain.
Resumo:
Extant research on the impact of privatization in the Central Europe (CE) region has focused on improvements in efficiency and the nature of cost-based advantages. This study argues that the development of a vibrant privatized sector requires attention to the broader resource configurations of domestic enterprises. Empirical research was conducted on a large sample of firms in Poland, Hungary and Slovenia. Foreign investment was found to significantly impact on resource accumulation with implications for the development of strategic capabilities and competitive advantage. Foreign direct investment is an effective vehicle for the transfer of financial resources, reputation and new brands but not organizational capabilities. In terms of practice, this study demonstrates the important role of outside investment in the development of a firm's resource base (Frydman et al. 1999). Companies can gain a competitive advantage in their domestic markets through gaining access to the resources of foreign investors.
Resumo:
Industrial development, accompanying human population growth, has had a major role in creating the situation where bio-diverse materials and services essential for sustaining business are under threat. A major contributory factor to biodiversity decline comes from the cumulative impacts of extended supply chain business operations. However, within Corporate Responsibility (CR) reporting impacts on biodiversity due to supply chain operations have not traditionally been given equal weighting with other environmental issues. This paper investigates the extent of CR reporting in managing and publicising company biodiversity supply chain issues by reviewing a cross-sector sample of publicly available CR reports. The report contents were examined for suggestions of industrial sectorial trends in the level of biodiversity consideration. The reporting of environmental management system use within company supply chain management is assessed in the samples and is considered as a mechanism for responsible supplier partnership working.
Resumo:
In the Operations Management field, sustainable procurement has emerged as a way to green the purchasing and supply process. This paper explores issues in sustainable procurement training. The authors formed an interdisciplinary team to design, deliver and evaluate a training programme to promote and develop sustainable procurement in the United Kingdom health sector. Particular features of the project were its engagement with evolving and contested understandings of sustainable procurement and of the underlying concept of sustainable development and its recognition that relevant knowledge in the field is both incomplete and widely diffused through the procurement community. Eight practitioner groups worked together on themes to develop their understanding of sustainable procurement using the Blackboard virtual learning environment. Group interviews were conducted upon completion of the course and again three months later to explore qualitatively participants' experience of learning and implementing sustainable procurement. Although the course was delivered to practitioners, it might be modified for undergraduate and graduate students as it comprised the use of online activities in virtual learning environments, case studies and a broad range of literature. The course was also particularly significant in the context of contemporary policy moves in the United Kingdom and elsewhere to promote the role of higher education institutions in delivering workplace-based, high-skills education consistent with strategic policy considerations (see, for example, DIUS, 2008).
Resumo:
The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.
Resumo:
The complexity and multifaceted nature of sustainable lifelong learning can be effectively addressed by a broad network of providers working co-operatively and collaboratively. Such a network involving the third, public and private sector bodies must realise the full potential of accredited flexible and blended formal learning, contextual opportunities offered by enablers of informal and non formal learning and the affordances derived from the various loose and open spaces that can make social learning effective. Such a conception informs the new Lifelong Learning Network Consortium on Sustainable Communities, Urban Regeneration and Environmental Technologies established and led by the Lifelong Learning Centre at Aston University. This paper offers a radical, reflective and political evaluation of its first year in development arguing that networked learning of this type could prefigure a new model for lifelong learning and sustainable education that renders the city itself a creative medium for transformative learning and sustainability.
Resumo:
The United Nations has pithily defined sustainable development as progress that ‘meets the needs of the present without compromising the ability of future generations to meet their own needs’. But sustainable development remains highly contested and is subject to a wide variety of interpretations, applications, and criticisms. Moreover, those seeking fully to understand this critical concept are confronted with a (sometimes dispiritingly) voluminous body of scholarly, polemical, and journalistic writing. Edited by the acclaimed author of Understanding Sustainable Development (Earthscan, 2008), this new title from Routledge’s Critical Concepts in the Environment series answers the need for an authoritative reference work to make sense of the vast literature on sustainable development, and the continuing explosion in research output. Drawing on a wide variety of sources that take full cognizance of the rich background and necessary adaptability of the concept to the imperatives of time, place, and culture, and which emphasize its connected and transdisciplinary nature, the editor has brought together in four volumes the canonical and the best cutting-edge work to produce an indispensable ‘mini library’. The collection covers the history, mediation, application, and likely future orientations of sustainable development, both conceptually and as a continually emerging practice. Sustainable Development is fully indexed and includes comprehensive introductions, newly written by the editor, which place the collected materials in their historical and intellectual context. It is an essential reference collection and is certain to be valued by scholars and students—as well as serious policy-makers and practitioners—as a vital one-stop research and pedagogic resource.
Resumo:
This paper reports on a part of work for the UNIDO initiative on technology transfer for sustainable industrial development. The proposed technology transfer framework, adapted from the East Asian late industrialisers model, identifies two categories of countries requiring support for enhancing their technological capabilities: (a) very late industrialisers (“low income” developing countries), and (b) slow industrialisers (countries with sizeable manufacturing sectors but limited success in gaining international competitiveness) and three technology transfer routes: (a) through trade and aid to strengthen indigenous production for domestic markets (Route 1); (b) through FDI and contracting to develop export oriented firms (Route 2), and (c) through the supply chain of capital equipment and materials to develop local subcontracting capacity (Route 3). Very late industrialisers need support to start with Route 1 in selected sectors and upgrade through imported mature technologies. Appropriate product innovations are also possible. The slow industrialisers have more scope for increased technology transfer through Routes 2 and 3.
Resumo:
This paper investigates the environmental sustainability and competitiveness perceptions of small farmers in a region in northern Brazil. The main data collection instruments included a survey questionnaire and an analysis of the region's strategic plan. In total, ninety-nine goat and sheep breeding farmers were surveyed. Data analysis methods included descriptive statistics, cluster analysis, and chi-squared tests. The main results relate to the impact of education, land size, and location on the farmers' perceptions of competitiveness and environmental issues. Farmers with longer periods of education have higher perception scores about business competitiveness and environmental sustainability than those with less formal education. Farmers who are working larger land areas also have higher scores than those with smaller farms. Lastly, location can yield factors that impact on farmers' perceptions. In our study, farmers located in Angicos and Lajes had higher perception scores than Pedro Avelino and Afonso Bezerra, despite the geographical proximity of these municipalities. On the other hand, three other profile variables did not impact on farmers' perceptions, namely: family income, dairy production volume, and associative condition. The authors believe the results and insights can be extended to livestock farming in other developing countries and contribute generally to fostering effective sustainable development policies, mainly in the agribusiness sector. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Despite the fact that Germany has a well- expanded traffic infrastructure, the country con-fronts a strong growth in freight volumes and it is very likely that in the forthcoming yearsit will not be able to reasonably cope with the increasing demand. Against this back-ground, the aim of this paper is to provide an in-depth analysis of the transport sector in North Germany in an effort to identify, if any, the possibilities of collapse as a result of the continuous increase in the demand of freight traffic. The research based on the DelphiTechnique, collects, analyses and summarizes the opinions of a group of experts in theaforementioned issues. Results indicate that railways could represent the solution to theforecasted growing freight volumes in the next years, not only in Germany, but also in thewhole European transport sector. In spite of continuous efforts undertaken by the politicsand the economy, the existing logistics and freight traffic concepts are not sufficient. Fi-nancing is too scarce; traffic concepts take issues like sustainability, environment protec-tion and working conditions into little consideration.
Resumo:
The potential replacement, partially or fully, of synthetic additives by bio-based alternatives derived from indigenous renewable non-food crop resources offers a market opportunity for a green supply of raw materials for different industrial and health products, with greater involvement of the farming community in crop production while addressing the ever more stringent environmental and pollution laws that now require the use of less potentially toxic/harmful ingredients, even if they are present in relatively small quantities. The work presented here relates to developing a new genre of environmentally-sustainable bio-based antioxidants (AO) for industrial uses that are obtained from extracts of UK-grown rosemary (Rosmarinus officinalis) plant. The performance of these AOs was tested, and their efficacy compared with some common and benchmark synthetic AOs from the same chemical class, in different products including polymers especially for packaging, as well as lubricants, cosmetics and health products. One of the main active ingredients in rosemary is Rosmarinic acid which is a water-soluble compound. This was chemically transformed into a number of ester derivatives, Rosmarinates, targeted for different applications. The parent and the modified antioxidants (the rosmarinates) were characterised and their antioxidancy were examined and tested in linear low-density polyethylene (LLDPE) and in polypropylene (PP) and compared with compounds of similar structure and with other well known synthetic antioxidants used commercially in polyolefins. The results show that antioxidants sourced from rosemary have the added benefit of being highly efficient and intrinsically more active than many synthetic and bio-based alternatives.
Resumo:
The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.