6 resultados para Biometric parameters
em Aston University Research Archive
Resumo:
PURPOSE: To demonstrate the application of low-coherence reflectometry to the study of biometric changes during disaccommodation responses in human eyes after cessation of a near task and to evaluate the effect of contact lenses on low-coherence reflectometry biometric measurements. METHODS: Ocular biometric parameters of crystalline lens thickness (LT) and anterior chamber depth (ACD) were measured with the LenStar device during and immediately after a 5 D accommodative task in 10 participants. In a separate trial, accommodation responses were recorded with a Shin-Nippon WAM-5500 optometer in a subset of two participants. Biometric data were interleaved to form a profile of post-task anterior segment changes. In a further experiment, the effect of soft contact lenses on LenStar measurements was evaluated in 15 participants. RESULTS: In 10 adult participants, increased LT and reduced ACD was seen during the 5 D task. Post-task, during fixation of a 0 D target, a profile of the change in LT and ACD against time was observed. In the two participants with accommodation data (one a sufferer of nearwork-induced transient myopia and other a non-sufferer), the post-task changes in refraction compared favorably with the interleaved LenStar biometry data. The insertion of soft contact lenses did not have a significant effect on LenStar measures of ACD or LT (mean change: -0.007 mm, p = 0.265 and + 0.001 mm, p = 0.875, respectively). CONCLUSIONS: With the addition of a relatively simple stimulus modification, the LenStar instrument can be used to produce a profile of post-task changes in LT and ACD. The spatial and temporal resolution of the system is sufficient for the investigation of nearwork-induced transient myopia from a biometric viewpoint. LenStar measurements of ACD and LT remain valid after the fitting of soft contact lenses.
Resumo:
Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters. Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters. Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181). Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.
Resumo:
PURPOSE. A methodology for noninvasively characterizing the three-dimensional (3-D) shape of the complete human eye is not currently available for research into ocular diseases that have a structural substrate, such as myopia. A novel application of a magnetic resonance imaging (MRI) acquisition and analysis technique is presented that, for the first time, allows the 3-D shape of the eye to be investigated fully. METHODS. The technique involves the acquisition of a T2-weighted MRI, which is optimized to reveal the fluid-filled chambers of the eye. Automatic segmentation and meshing algorithms generate a 3-D surface model, which can be shaded with morphologic parameters such as distance from the posterior corneal pole and deviation from sphericity. Full details of the method are illustrated with data from 14 eyes of seven individuals. The spatial accuracy of the calculated models is demonstrated by comparing the MRI-derived axial lengths with values measured in the same eyes using interferometry. RESULTS. The color-coded eye models showed substantial variation in the absolute size of the 14 eyes. Variations in the sphericity of the eyes were also evident, with some appearing approximately spherical whereas others were clearly oblate and one was slightly prolate. Nasal-temporal asymmetries were noted in some subjects. CONCLUSIONS. The MRI acquisition and analysis technique allows a novel way of examining 3-D ocular shape. The ability to stratify and analyze eye shape, ocular volume, and sphericity will further extend the understanding of which specific biometric parameters predispose emmetropic children subsequently to develop myopia. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
The relationship between accommodation and intraocular pressure (lOP) has not been addressed as a research question for over 20 years, when measurement of both of these parameters was less advanced than today. Hence the central aim of this thesis was to evaluate the effects of accommodation on lOP. The instrument of choice throughout this thesis was the Pulsair EasyEye non-contact tonometer (NCT) due principally to its slim-line design which allowed the measurement of lOP in one eye and simultaneous stimulation of accommodation in the other eye. A second reason for using the Pulsair EasyEye NCT was that through collaboration with the manufacturers (Keeler, UK) the instrument's operational technology was made accessible. Hence, the principle components underpinning non-contact lOP measures of 0.1mmHg resolution (an order of magnitude greater than other methods) were made available. The relationship between the pressure-output and corneal response has been termed the pressure-response relationship, aspects of which have been shown to be related to ocular biometric parameters. Further, analysis of the components of the pressure-response relationship together with high-speed photography of the cornea during tonometry has enhanced our understanding of the derivation of an lOP measure with the Pulsair EasyEye NCT. The NCT samples the corneal response to the pressure pulse over a 19 ms cycle photoelectronically, but computes the subject's lOP using the data collected in the first 2.34 ms. The relatively instantaneous nature of the lOP measurement renders the measures susceptible to variations in the steady-state lOP caused by the respiratory and cardiac cycles. As such, the variance associated with these cycles was minimised by synchronising the lOP measures with the cardiac trace and maintaining a constant pace respiratory cycle at 15 breathes/minute. It is apparent that synchronising the lOP measures with the peak, middle or trough of the cardiac trace significantly reduced the spread of consecutive measures. Of the 3 locations investigated, synchronisation with the middle location demonstrated the least variance (coeflicient of variation = 9.1%) and a strong correlation (r = 0.90, p = <0.001) with lOP values obtained with Goldmann contact tonometry (n = 50). Accordingly lOP measures synchronised with the middle location of the cardiac cycle were taken in the RE while the LE fixated low (L; zero D), intermediate (I; 1.50 D) and high (H; 4 D) accommodation targets, Quasi-continuous measures of accommodation responses were obtained during the lOP measurement period using the portable infrared Grand Seiko FR-5000 autorefractor. The lOP reduced between L and I accommodative levels by approximately 0.61 mmHg (p <0.00 I). No significant reduction in IOP between L and H accommodation levels was elicited (p = 0.65) (n = 40). The relationship between accommodation and lOP was characterised by substantial inter-subject variations. Myopes demonstrated a tendency to show a reduction in IOP with accommodation which was significant only with I accommodation levels when measured with the NCT (r = 0.50, p = 0.01). However, the relationship between myopia and lOP change with accommodation reached significance for both I (r = 0.61, p= 0.003) and H (r = 0.531, p= 0.0 1) accommodation levels when measured with the Ocular blood Flow Analyser (OBFA). Investigation of the effects of accommodation on the parameters measured by the OBFA demonstrated that with H accommodation levels the pulse amplitude (PA) and pulse rate (PR) responses differed between myopes and emmetropes (PA: p = 0.03; PR: p = 0.004). As thc axial length increased there was a tendency for the pulsatile ocular blood flow (POBF) to reduce with accommodation, which was significant only with H accommodation levels (r = 0.38, p = 0.02). It is proposed that emmetropes arc able to regulate the POBF responses to changes in ocular perfusion pressure caused by changes in lOP with I (r = 0.77, p <0.001) and H (r = 0.73, p = 0.001) accommodation levels. However, thc relationship between lOP and POBF changes in the myopes was not correlated for both I (r = 0.33, p = 0.20) and H (r = 0.05, p = 0.85) accommodation levels. The thesis presents new data on the relationships between accommodation, lOP and parameters of the OBFA,: and provides evidence for possible lOP and choroidal blood flow regulatory mechanisms. Further the data highlight possible deficits in the vascular regulation of the myopic eye during accommodation, which may play a putative role in the aetiology of myopia development.
Resumo:
Background/aims - To determine which biometric parameters provide optimum predictive power for ocular volume. Methods - Sixty-seven adult subjects were scanned with a Siemens 3-T MRI scanner. Mean spherical error (MSE) (D) was measured with a Shin-Nippon autorefractor and a Zeiss IOLMaster used to measure (mm) axial length (AL), anterior chamber depth (ACD) and corneal radius (CR). Total ocular volume (TOV) was calculated from T2-weighted MRIs (voxel size 1.0 mm3) using an automatic voxel counting and shading algorithm. Each MR slice was subsequently edited manually in the axial, sagittal and coronal plane, the latter enabling location of the posterior pole of the crystalline lens and partitioning of TOV into anterior (AV) and posterior volume (PV) regions. Results - Mean values (±SD) for MSE (D), AL (mm), ACD (mm) and CR (mm) were −2.62±3.83, 24.51±1.47, 3.55±0.34 and 7.75±0.28, respectively. Mean values (±SD) for TOV, AV and PV (mm3) were 8168.21±1141.86, 1099.40±139.24 and 7068.82±1134.05, respectively. TOV showed significant correlation with MSE, AL, PV (all p<0.001), CR (p=0.043) and ACD (p=0.024). Bar CR, the correlations were shown to be wholly attributable to variation in PV. Multiple linear regression indicated that the combination of AL and CR provided optimum R2 values of 79.4% for TOV. Conclusion - Clinically useful estimations of ocular volume can be obtained from measurement of AL and CR.
Resumo:
Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p<0.0005) and between groups (p<0.0005). However, the refractive error components and ocular aberrations were not found to alter significantly over the day in either the diabetic patients or the control subjects (p>0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients. © 2012 Huntjens et al.