16 resultados para Biomedical engineering.

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an assessment of the practical value of existing traditional and non-standard measures for discriminating healthy people from people with Parkinson's disease (PD) by detecting dysphonia. We introduce a new measure of dysphonia, Pitch Period Entropy (PPE), which is robust to many uncontrollable confounding effects including noisy acoustic environments and normal, healthy variations in voice frequency. We collected sustained phonations from 31 people, 23 with PD. We then selected 10 highly uncorrelated measures, and an exhaustive search of all possible combinations of these measures finds four that in combination lead to overall correct classification performance of 91.4%, using a kernel support vector machine. In conclusion, we find that non-standard methods in combination with traditional harmonics-to-noise ratios are best able to separate healthy from PD subjects. The selected non-standard methods are robust to many uncontrollable variations in acoustic environment and individual subjects, and are thus well-suited to telemonitoring applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The devising of a general engineering theory of multifunctional diagnostic systems for non-invasive medical spectrophotometry is an important and promising direction of modern biomedical engineering. We aim in this study to formalize in scientific engineering terms objectives for multifunctional laser non-invasive diagnostic system (MLNDS). The structure-functional model as well as a task-function of generalized MLNDS was formulated and developed. The key role of the system software for MLNDS general architecture at steps of ideological-technical designing has been proved. The basic principles of block-modules composition of MLNDS hardware are suggested as well. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations and its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. Most of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as waveform shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions extend the information from typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focuses on detection of CN patients' waveform type and on foveation time measure. Specifically, it proposes a robust method to recognize cycles corresponding to the specific CN waveform in the eye movement pattern and, for those cycles, evaluate the exact signal tracts in which a subject foveates. About 40 eyemovement recordings, either infrared-oculographic or electrooculographic, were acquired from 16 CN subjects. Results suggest that the use of an adaptive threshold applied to the eye velocity signal could improve the estimation of slow phase start point. This can enhance foveation time computing and reduce influence of repositioning saccades and data noise on the waveform type identification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many studies have accounted for whole body vibration effects in the fields of exercise physiology, sport and rehabilitation medicine. Generally, surface EMG is utilized to assess muscular activity during the treatment; however, large motion artifacts appear superimposed to the raw signal, making sEMG recording not suitable before any artifact filtering. Sharp notch filters, centered at vibration frequency and at its superior harmonics, have been used in previous studies, to remove the artifacts. [6, 10] However, to get rid of those artifacts some true EMG signal is lost. The purpose of this study was to reproduce the effect of motor-unit synchronization on a simulated surface EMG during vibratory stimulation. In addition, authors mean to evaluate the EMG power percentage in those bands in which are also typically located motion artifact components. Model characteristics were defined to take into account two main aspect: the muscle MUs discharge behavior and the triggering effects that appear during local vibratory stimulation. [7] Inter-pulse-interval, was characterized by a polimodal distribution related to the MU discharge frequency (IPI 55-80ms, σ=12ms) and to the correlation with the vibration period within the range of ±2 ms due to vibration stimulus. [1, 7] The signals were simulated using different stimulation frequencies from 30 to 70 Hz. The percentage of the total simulated EMG power within narrow bands centered at the stimulation frequency and its superior harmonics (± 1 Hz) resulted on average about 8% (± 2.85) of the total EMG power. However, the artifact in those bands may contain more than 40% of the total power of the total signal. [6] Our preliminary results suggest that the analysis of the muscular activity of muscle based on raw sEMG recordings and RMS evaluation, if not processed during vibratory stimulation may lead to a serious overestimation of muscular response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole body vibration (WBV) aims to mechanically activate muscles by eliciting stretch reflexes. Mechanical vibrations are usually transmitted to the patient body standing on a oscillating plate. WBV is now more and more utilized not only for fitness but also in physical therapy, rehabilitation and in sport medicine. Effects depend on intensity, direction and frequency of vibration; however, the training frequency is one of the most important factors involved. A preliminary vibratory session can be dedicated to find the best vibration frequency for each subject by varying, stepwise, the stimulation frequency and analyzing the resulting EMG activity. This study concentrates on the analysis of muscle motion in response to a vibration frequency sweep, while subjects held two different postures. The frequency of a vibrating platform was increased linearly from 10 to 60 Hz in 26 s, while platform and single muscles (Rectus Femoris, Biceps Femoris - long head and Gastrocnemius Lateralis) motions were monitored using tiny, lightweight three-axial MEMS accelerometers. Displacements were estimated integrating twice the acceleration data after gravity contribution removal. Mechanical frequency response (amplitude and phase) of the mechanical chains ending at the single muscles was characterized. Results revealed a mechanical resonant-like behavior at some muscles, very similar to a second-order system in the frequency interval explored; resonance frequencies and dumping factors depended on subject and its positioning onto the vibrating platform. Stimulation at the resonant frequency maximizes muscle lengthening, and in turn muscle spindle solicitation, which produce muscle activation. © 2009 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Congenital nystagmus (CN) is an ocular-motor disorder that appears at birth or during the first few months of life; it is characterised by involuntary, conjugated, bilateral to and fro ocular oscillations. Pathogenesis of congenital nystagmus is still unknown. Eye movement recording allow to extract and analyse nystagmus main features such as shape, amplitude and frequency; depending on the morphology of the oscillations nystagmus can be classified in different categories (pendular, jerk, horizontal unidirectional, bidirectional). In general, CN patient show a considerable decrease of the visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations; however, image stabilisation is still achieved during the short foveation periods in which eye velocity slows down while the target image is placed onto the fovea. Visual acuity was found to be mainly dependent on foveation periods duration, but cycle-to-cycle foveation repeatability and reduction of retinal image velocities also contribute in increasing visual acuity. This study concentrate on cycle-to-cycle image position variation onto fovea, trying to characterise the sequences of foveation positions. Eye-movement (infrared oculographic or electro oculographic) recordings, relative to different gaze positions and belonging to more than 30 CN patients, were analysed. Preliminary results suggest that sequences of foveations show a cyclic pattern with a dominant frequency (around 0.3 Hz on average) much lower than that of the nystagmus (about 3.3 Hz on average). Sequences of foveations reveals an horizontal ocular swing of more than 2 degree on average, which can explain the low visual acuity of the CN patient. Current CN therapies, pharmacological treatment or surgery of the ocular muscles, mainly aim to increase the patient's visual acuity. Hence, it is fundamental to have an objective parameter (expected visual acuity) for therapy planning. The information about sequences of foveations can improve estimation of patient visual acuity. © 2008 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A valuable alternative to US cardiotocography, for fetal surveillance, can be offered by phonocardiography, a passive and low cost acoustic recording of fetal heart sounds. A crucial point is the exact recognizing of the fetal heart sounds, associated to each fetal heart beat, and then the estimation of FHR signal. In this work, software for FHR assessment from phonocardiographic signals was developed. To check the reliability of the software, obtained results were compared with those of simultaneously recorded cardiotocographic signals. Results seemed to be satisfying, as provided FHR series were almost all confined within FHR-CTG +/- 3 bpm, where FHR-CTG were FHR series provided by commercial US cardiotocographic devices, currently employed in clinical routine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an increasing use of emerging patterning technologies such as UV-NIL in biotechnological applications there is at the same time a raising demand for new material for such applications. Here we present a PEG based precursor mixed with a photoinitiator to make it UV sensitive as a new material aimed at biotechnological applications. Using HSQ patterned quartz stamps we observed excellent pattern replication indicating good flow properties of the resist. We were able to obtain imprints with <20 nm residual layer. The PEG based resist has hydrogel properties and it swelling in water was observed by AFM.