2 resultados para Biomechanical properties

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis investigates the relationship between the biomechanical properties of the anterior human sclera and cornea in vivo using Schiotz tonometry (ST), rebound tonometry (RBT, iCare) and the Ocular Response Analyser (ORA, Reichert). Significant differences in properties were found to occur between scleral quadrants. Structural correlates for the differences were examined using Partial Coherent Interferometry (IOLMaster, Zeiss), Optical Coherent tomography (Visante OCT), rotating Scheimpflug photography (Pentacam, Oculus) and 3-D Magnetic Resonance Imaging (MRI). Subject groups were employed that allowed investigation of variation pertaining to ethnicity and refractive error. One hundred thirty-five young adult subjects were drawn from three ethnic groups: British-White (BW), British-South-Asian (BSA) and Hong-Kong-Chinese (HKC) comprising non-myopes and myopes. Principal observations: ST demonstrated significant regional variation in scleral resistance a) with lowest levels at quadrant superior-temporal and highest at inferior-nasal; b) with distance from the limbus, anterior locations showing greater resistance. Variations in resistance using RBT were similar to those found with ST; however the predominantly myopic HKC group had a greater overall mean resistance when compared to the BW-BSA group. OCT-derived scleral thickness measurements indicated the sclera to be thinner superiorly than inferiorly. Thickness varied with distance from the corneolimbal junction, with a decline from 1 to 2 mm followed by a successive increase from 3 to 7 mm. ORA data varied with ethnicity and refractive status; whilst axial length (AL) was associated with corneal biometrics for BW-BSA individuals it was associated with IOP in the HKC individuals. Complex interrelationships were found between ORA Additional-Waveform-Parameters and biometric data provided by the Pentacam. OCT indicated ciliary muscle thickness to be greater in myopia and more directly linked to posterior ocular volume (from MRI) than AL. Temporal surface areas (SAs, from MRI) were significantly smaller than nasal SAs in myopic eyes; globe bulbosity (from MRI) was constant across quadrants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Lower back pain treatment and compensation costs >$80 billion overall in the US. 75% of back pain is due to disc degeneration in the lumbar region of the spine. Current treatment comprises of painkillers and bed rest or as a more radical solution – interbody cage fusion. In the early stages of disc degeneration the patient would benefit from addition of an injectable gel which polymerises in situ to support the degenerated nucleus pulposus. This involves a material which is an analogue of the natural tissue capable of restoring the biomechanical properties of the natural disc. The nucleus pulposus of the intervertebral disc is an example of a natural proteoglycan consisting of a protein core with negatively charged keratin and chondroitin sulphate attached. As a result of the high fixed charge density of the proteoglycan, the matrix exerts an osmotic swelling pressure drawing sufficient water into support the spinal system. Materials and Methods: NaAMPs (sodium 2- acrylamido 2-methyl propane sulphonic acid) and KSPA (potassium 3- sulphopropyl acrylate) were selected as monomers, the sulphonate group being used to mimic the natural sulphate group. These are used in dermal applications involving chronic wounds and have acceptably low cytotoxicity. Other hydrophilic carboxyl, amide and hydroxyl monomers such as 2-hydroxyethyl acrylamide, ß-carboxyethyl acrylate, acryloyl morpholine, and polyethylene glycol (meth)acrylate were used as diluents together with polyethyleneglycol di(meth)acrylate and hydrophilic multifunctional macromers as cross-linker. Redox was the chosen method of polymerisation and a range of initiators were investigated. Components were packaged in two solutions each containing a redox pair. A dual syringe method of injection into the cavity was used, the required time for polymerisation is circa 3-7 minutes. The final materials were tested using a Bohlin CVO Rheometer cycling from 0.5-25Hz at 37oC to measure the modulus. An in-house compression testing method was developed, using dialysis tubing to mimic the cavity, the gels were swelled in solutions of various osmolarity and compressed to ~ 20%. The pre-gel has also been injected into sheep spinal segments for mechanical compression testing to demonstrate the restoration of properties upon use of the gel. Results and Discussion: Two systems resulted using similar monomer compositions but different initiation and crosslinking agents. NaAMPs and KSPA were used together at a ratio of ~1:1 in both systems with 0.25-2% crosslinking agent, diacrylate or methacrylate. The two initiation systems were ascorbic acid/oxone, and N,N,N,N - tetramethylethylenediamine (TEMED)/ potassium persulphate. These systems produced gelation within 3-7 and 3-5 minutes respectively. Storage of the two component systems was shown to be stable for approximately one month after mixing, in the dark, refrigerated at 1-4oC. The gelation was carried out at 37oC. Literature values for the natural disc give elastic constants ranging from 3-8kPa. The properties of the polymer can be tailored by altering crosslink density and monomer composition and are able to match those of the natural disc. It is possible to incorporate a radio-opaque (histodenz) to enable x-ray luminescence during and after injection. At an inclusion level of 5% the gel is clearly visible and polymerisation and mechanical properties are not altered. Conclusion: A two-pac injection system which will polymerise in situ, that can incorporate a radio-opaque, has been developed. This will reinforce the damaged nucleus pulposus in degenerative disc disease restoring adequate hydration and thus biomechanical properties. Tests on sheep spine segments are currently being carried out to demonstrate that a disc containing the gel has similar properties to an intact disc in comparison to one with a damaged nucleus.