2 resultados para Biolog
em Aston University Research Archive
Resumo:
In an increasingly hygiene concerned society, a major barrier to pet ownership is the perceived role of companion animals in contributing to the risk of exposure to zoonotic bacterial pathogens, such as Salmonella. Manifestations of Salmonella can range from acute gastroenteritis to perfuse enteric fever, in both humans and dogs. Dogs are heavily associated with asymptomatic carriage of Salmonella as the microorganism can persist in the lower intestines of this host which can be then excreted into the environment. Studies in to the asymptomatic carriage of Salmonella in dogs are somewhat dated and there is limited UK data. The current UK carriage rate in dogs was investigated in a randomised dog population and it was revealed that the carriage rate in this population was very low with only one household dog positive for the carriage of Salmonella enterica arizonae (0.2%), out of 490 dogs sampled. Salmonella serotypes share phenotypic and genotypic similarities which are captured in epidemiological typing methods. Therefore, in parallel to the epidemiological investigations, a panel of clinical canine (VLA, UK) and human (Aston University, UK) Salmonella isolates were profiled based on their phenotypic and genotypic characteristics; using API 20E, Biolog Microbial ID System, antibiotic sensitivity testing and PFGE, respectively. Antibiotic sensitivity testing revealed a significant difference between the canine and human isolates with the canine group demonstrating a higher resistance to the panel of antibiotics tested. Further metabolic capabilities of the strains were tested using the Biolog Microbial ID System, which reveal no clear association between the two host groups. However, coupled with Principle Component Analysis two canine isolates were discriminated from the entire population on the basis of a high up-regulation of two carbohydrates. API 20E testing revealed no association between the two host groups. A PFGE harmonised protocol was used to genotypically profile the strains. A dendrogram depicting PFGE profiles of the panel of Salmonella isolates was performed where similarities were calculated by Dice coefficient and represented by UPGMA clustering. Clustering of the profiles from canine isolates and human isolates (HPA, UK) was diverse representing a natural heterogeneity of the genus, additionally, no clear clustering of the isolates was observed between host groups. Clustering was observed with isolates from the same serotype, independent of host origin. Host adaption is a common phenomenon in certain Salmonella serotypes, for example S. Typhi in humans and S. Dublin in cattle. It was of interest to investigate potential host adaptive or restricted strains for canine host by performing adhesion and invasion assays on Dog Intestinal Epithelial Cells (DIECs) (WALTHAM®, UK) and human CaCo-2 (HPA, UK) cell lines. Salmonella arizonae and Enteritidis from an asymptomatic dog and clinical isolate, respectively, demonstrated a significantly high proportion of invasion in DIEC in comparison to human CaCo-2 cells and other tested Salmonella serotypes. This may be suggestive of a potential host restrictive strain as their ability to invade the CaCo-2 cell line was significantly lower than the other serotypes. In conclusion to this thesis the investigations carried out suggest that asymptomatic carriage of Salmonella in UK dogs is low however the microorganism remains as a zoonotic and anthroponotic pathogen based on phenotypic and genotypic characterisation however there may be potential for particular serotype to become host restricted as observed in invasion assays
Resumo:
The persistence of Salmonella spp. in low moisture foods is a challenge for the food industry as despite control strategies already in place, notable outbreaks still occur. The aim of this study was to characterise isolates of Salmonella, known to be persistent in the food manufacturing environment, by comparing their microbiological characteristics with a panel of matched clinical and veterinary isolates. The gross morphology of the challenge panel was phenotypically characterised in terms of cellular size, shape and motility. In all the parameters measured, the factory isolates were indistinguishable from the human, clinical and veterinary strains. Further detailed metabolic profiling was undertaken using the biolog Microbial ID system. Multivariate analysis of the metabolic microarray revealed differences in metabolism of the factory isolate of S.Montevideo, based on its upregulated ability to utilise glucose and the sugar alcohol groups. The remainder of the serotype-matched isolates were metabolically indistinguishable. Temperature and humidity are known to influence bacterial survival and through environmental monitoring experimental parameters were defined. The results revealed Salmonella survival on stainless steel was affected by environmental temperatures that may be experienced in a food processing environment; with higher survival rates (D25=35.4) at temperatures at 25°C and lower humidity levels of 15% RH, however a rapid decline in cell count (D10=3.4) with lower temperatures of 10°C and higher humidity of 70% RH. Several resident factories strains survived in higher numbers on stainless steel (D25=29.69) compared to serotype matched clinical and veterinary isolates (D25=22.98). Factory isolates of Salmonella did not show an enhanced growth rate in comparison to serotype matched solates grown in Luria broth, Nutrient broth and M9 minimal media indicating that as an independent factor, growth was unlikely to be a major factor driving Salmonella persistence. Using a live / dead stain coupled with fluorescence microscopy revealed that when no longer culturable, isolates of S.Schwarzengrund entered into a viable nonculturable state. The biofilm forming capacity of the panel was characterised and revealed that all were able to form biofilms. None of the factory isolates showed an enhanced capability to form biofilms in comparison to serotype-matched isolates. In disinfection studies, planktonic cells were more susceptible to disinfectants than cells in biofilm and all the disinfectants tested were successful in reducing bacterial load. Contact time was one of the most important factors for reducing bacterial populations in a biofilm. The genomes of eight strains were sequenced. At the nucleotide and amino acid level the food factory isolates were similar to those of isolates from other environments; no major genomic rearrangements were observed, supporting the conclusions of the phenotypic and metabolic analysis. In conclusion, having investigated a variety of morphological, biochemical and genomic factors, it is unlikely that the persistence of Salmonella in the food manufacturing environment is attributable to a single phenotypic, metabolic or genomic factor. Whilst a combination of microbiological factors may be involved it is also possible that strain persistence in the factory environment is a consequence of failure to apply established hygiene management principles.