10 resultados para Biocid and corrosion
em Aston University Research Archive
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.
Resumo:
Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.
Resumo:
Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.
Resumo:
Magnesium alloy diecasting AZ91CC, AZ61CC', AZ91HC and AZ71HC were electroplated using different pretreatment sequences which incorporated conventional zincate immersion processes. Satisfactory peel adhesion in excess of 7. 7 KNm -1 was achieved on AZ61CC using a sequence which was designated Canning. The comparatively low adhesion achieved on the AZ91HC was due to its poor surface quality as cast. Growth of deposits was monitored using a strip-and-analysis technique and the morphology of the various deposits were studied using scanning electron microscopy. Different pretreatment sequences resulted in different surface responses for the alloys but all alloys behaved in a similar manner in a particular sequence with regard to potential time-curves and the rate of zinc deposition. The role of fluoride in both the second stage solution and zinc immersion stages of the Canning pretreatment sequence was studied using techniques listed above and Auger electron spectroscopy. Complete coverage of the magnesium alloy surface with immersion zinc was achieved when fluoride was absent from the zincating solution. However, a zero adhesion value was indicated in both thermal cycling and peel tests. The presence of fluoride in the immersion zinc solution suppressed the rate of zinc deposition and affected the time taken to reach equilibrium during potential-time determinations. A mechanism is suggested to explain the significance of fluoride additions to the processing solutions. pH and composition of the zincating solution had a significant effect on the time taken to produce the step observed in the potential/time curves and hence equilibrium potential. Immersion zinc deposition occurred rapidly at first but then changed to a lower uniform rate at a point corresponding approximately to the step in the potential/time curve. Although the minimun levels of adhesion, using the Canning sequence, varied from 7.72 KNm-1 for alloy AZ61CC to 1.54 KNm-1 for alloy AZ91HC, all the alloys revealed ductile failure characteristics in the surface layer of the substrate after peel testing. Plated magnesium alloys exhibited good corrosion resistance when appropriately pretreated and overplated with adequate nickel chromium coatings. The immersion zinc layer was not preferentially attacked when pits penetrated to the coating/substrate interface. Hemispherical pits formed and attack on the substrate was severe. Of the pretreatment sequences investigated, the Canning one was the most premising with respect to peel adhesion and corrosion behaviour.
Resumo:
Ultrasonic waves interact in a complex manner with the metallurgical structure of austenitic weldments resulting in ambiguity when interpreting reflections and at times in misinterpretation of defect positions. In this work, current knowledge of the structure of austenitic welds is outlined, and the influence of this structure on the propagation of ultrasonic waves is reviewed. Using an established and highly accurate technique, data on velocity variations as a function of the angle between the direction of soundwave propagation and the axes of preferred grain orientation existing in such welds, are experimentally obtained. These results and existing theory are used to provide quantitative evidence of (i) anisotropy factors in austenitic welds, (ii) beam skewing effects for different wave modes and polarizations, and (iii) the extent of acoustic impedance mismatch between parent and weld metals. The existence of "false" indications is demonstrated, and suggestions are made into their nature. The effectiveness of conventional transverse wave techniques for inspecting artificial and real defects existing in austenitic weldments is experimentally investigated, the limitations are demonstrated, and possible solutions are proposed. The possibilities offered by the use of longitudinal angle probes for ultrasonic inspection of real and artificial defects existing in austenitic weldments are experimentally investigated, and parameters such as probe angle, frequency and scanning position are evaluated. Detailed work has been carried out on the interaction of ultrasound with fatigue and corrosion-fatigue cracks in the weld metal and the heat affected zones (HAZs) of 316 and 347 types of austenitic weldments, together with the influence of elastic compressive stresses, defect topography and defect geometry. Practical applications of all results are discussed, and more effective means of ultrasonic inspection of austenitic weldments are suggested.
Resumo:
Sodium formate, potassium acetate and a mixture of calcium and magnesium acetate (CMA) have all been identified as effective de-icing agents. In this project an attempt has been made to elucidate potentially deleterious effects of these substances on the durability of reinforced concrete. Aspects involving the corrosion behaviour of embedded steel along with the chemical and physical degradation of the cementitious matrix were studied. Ionic diffusion characteristics of deicer/pore solution systems in hardened cement paste were also studied since rates of ingress of deleterious agents into cement paste are commonly diffusion-controlled. It was found that all the compounds tested were generally non-corrosive to embedded steel, however, in a small number of cases potassium acetate did cause corrosion. Potassium acetate was also found to cause cracking in concrete and cement paste samples. CMA appeared to degrade hydrated cement paste although this was apparently less of a problem when commercial grade CMA was used in place of the reagent grade chemical. This was thought to be due to the insoluble material present in the commercial formulation forming a physical barrier between the concrete and the de-icing solution. With the test regimes used sodium formate was not seen to have any deleterious effect on the integrity of reinforced concrete. As a means of restoring the corrosion protective character of chloride-contaminated concrete the process of electrochemical chloride removal has been previously developed. Potential side-effects of this method and the effect of external electrolyte composition on chloride removal efficiency were investigated. It was seen that the composition of the external electrolyte has a significant effect on the amount of chloride removed. It was also found that, due to alterations to the composition of the C3A hydration reaction products, it was possible to remove bound chloride as well as that in the pore solution. The use of an external electrolyte containing lithium ions was also tried as a means of preventing cathodically-induced alkali-silica reaction in concretes containing potentially reactive aggregates. The results obtained were inconclusive and further practical development of this approach is needed.
Resumo:
A study of several chemical and electrochemical factors which affect the behaviour of embedded steel in cement pastes and concrete has been made. The effects of internal and external sources of chloride ions on the pore solution chemistry of Portland cement pastes, with and without additions of anodic corrosion inhibitors, have been studied using a pore solution expression device which has enabled samples of pore solution to be expressed from hardened cement pastes and analysed for various ionic species. Samples of pure alite and tricalcium aluminate have been prepared and characterised with respect to morphology, free lime content and fineness. Kinetics of diffusion of chloride ions in hardened pastes of alite and alite blended with tricalcium aluminate have been investigated and an activation energy obtained for the diffusion process in alite. The pore structures of the hardened pastes and the chloride ion binding capacity of alite have also been determined. Concrete cylinders containing embedded steel with four different surface conditions were exposed to various environments. The electrochemical behaviour of the steel was monitored during the period of exposure by means of rest potential measurements and the steel corrosion products analysed before and after being embedded. An examination was made of the nature of the interfacial zones produced between the embedded steel and cement. Rest potential measurements were monitored for steel embedded in alite paste in the presence of chloride ions and cement paste containing various levels of inhibitors in combination with chloride ions. In the latter case the results were supported by polarisation resistance determinations.
Resumo:
Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.
Resumo:
Silicon carbide ceramics are candidate materials for use in aggressive environments, including those where aqueous acids are present. Standard corrosion testing methods such as immersion testing are not always sufficiently sensitive for these ceramics owing to the very low, almost unobservable, corrosion rates encountered. Using electrochemical methods the corrosion processes can be assisted, leading to higher rates and thus the elucidation of reaction mechanisms. The behaviour of a sintered and a reaction bonded silicon carbide has been investigated in aqueous HCl, HF, HNO3, and H2SO4, using standard immersion and new electrochemical methods. Both materials were passive in HCl, HNO3, and H2SO4 because of the formation of a surface silica film, and were active in HF. In HF, corrosion of sintered silicon carbide was slight and the residual silicon was removed from reaction bonded specimens.