32 resultados para Binocular Vision
em Aston University Research Archive
Resumo:
Our goal here is a more complete understanding of how information about luminance contrast is encoded and used by the binocular visual system. In two-interval forced-choice experiments we assessed observers' ability to discriminate changes in contrast that could be an increase or decrease of contrast in one or both eyes, or an increase in one eye coupled with a decrease in the other (termed IncDec). The base or pedestal contrasts were either in-phase or out-of-phase in the two eyes. The opposed changes in the IncDec condition did not cancel each other out, implying that along with binocular summation, information is also available from mechanisms that do not sum the two eyes' inputs. These might be monocular mechanisms. With a binocular pedestal, monocular increments of contrast were much easier to see than monocular decrements. These findings suggest that there are separate binocular (B) and monocular (L,R) channels, but only the largest of the three responses, max(L,B,R), is available to perception and decision. Results from contrast discrimination and contrast matching tasks were described very accurately by this model. Stimuli, data, and model responses can all be visualized in a common binocular contrast space, allowing a more direct comparison between models and data. Some results with out-of-phase pedestals were not accounted for by the max model of contrast coding, but were well explained by an extended model in which gratings of opposite polarity create the sensation of lustre. Observers can discriminate changes in lustre alongside changes in contrast.
Resumo:
PURPOSE. Strabismic amblyopia is typically associated with several visual deficits, including loss of contrast sensitivity in the amblyopic eye and abnormal binocular vision. Binocular summation ratios (BSRs) are usually assessed by comparing contrast sensitivity for binocular stimuli (sens BIN) with that measured in the good eye alone (sensGOOD), giving BSR = sensBIN/sensGOOD. This calculation provides an operational index of clinical binocular function, but does not assess whether neuronal mechanisms for binocular summation of contrast remain intact. This study was conducted to investigate this question. METHODS. Horizontal sine-wave gratings were used as stimuli (3 or 9 cyc/deg; 200 ms), and the conventional method of assessment (above) was compared with one in which the contrast in the amblyopic eye was adjusted (normalized) to equate monocular sensitivities. RESULTS. In nine strabismic amblyopes (mean age, 32 years), the results confirmed that the BSR was close to unity when the conventional method was used (little or no binocular advantage), but increased to approximately √2 or higher when the normalization method was used. The results were similar to those for normal control subjects (n = 3; mean age, 38 years) and were consistent with the physiological summation of contrast between the eyes. When the normal observers performed the experiments with a neutral-density (ND) filter in front of one eye, their performance was similar to that of the amblyopes in both methods of assessment. CONCLUSIONS. The results indicate that strabismic amblyopes have mechanisms for binocular summation of contrast and that the amblyopic deficits of binocularity can be simulated with an ND filter. The implications of these results for best clinical practice are discussed. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Ecological approaches to perception have demonstrated that information encoding by the visual system is informed by the natural environment, both in terms of simple image attributes like luminance and contrast, and more complex relationships corresponding to Gestalt principles of perceptual organization. Here, we ask if this optimization biases perception of visual inputs that are perceptually bistable. Using the binocular rivalry paradigm, we designed stimuli that varied in either their spatiotemporal amplitude spectra or their phase spectra. We found that noise stimuli with “natural” amplitude spectra (i.e., amplitude content proportional to 1/f, where f is spatial or temporal frequency) dominate over those with any other systematic spectral slope, along both spatial and temporal dimensions. This could not be explained by perceived contrast measurements, and occurred even though all stimuli had equal energy. Calculating the effective contrast following attenuation by a model contrast sensitivity function suggested that the strong contrast dependency of rivalry provides the mechanism by which binocular vision is optimized for viewing natural images. We also compared rivalry between natural and phase-scrambled images and found a strong preference for natural phase spectra that could not be accounted for by observer biases in a control task. We propose that this phase specificity relates to contour information, and arises either from the activity of V1 complex cells, or from later visual areas, consistent with recent neuroimaging and single-cell work. Our findings demonstrate that human vision integrates information across space, time, and phase to select the input most likely to hold behavioral relevance.
Resumo:
The human visual system combines contrast information from the two eyes to produce a single cyclopean representation of the external world. This task requires both summation of congruent images and inhibition of incongruent images across the eyes. These processes were explored psychophysically using narrowband sinusoidal grating stimuli. Initial experiments focussed on binocular interactions within a single detecting mechanism, using contrast discrimination and contrast matching tasks. Consistent with previous findings, dichoptic presentation produced greater masking than monocular or binocular presentation. Four computational models were compared, two of which performed well on all data sets. Suppression between mechanisms was then investigated, using orthogonal and oblique stimuli. Two distinct suppressive pathways were identified, corresponding to monocular and dichoptic presentation. Both pathways impact prior to binocular summation of signals, and differ in their strengths, tuning, and response to adaptation, consistent with recent single-cell findings in cat. Strikingly, the magnitude of dichoptic masking was found to be spatiotemporally scale invariant, whereas monocular masking was dependent on stimulus speed. Interocular suppression was further explored using a novel manipulation, whereby stimuli were presented in dichoptic antiphase. Consistent with the predictions of a computational model, this produced weaker masking than in-phase presentation. This allowed the bandwidths of suppression to be measured without the complicating factor of additive combination of mask and test. Finally, contrast vision in strabismic amblyopia was investigated. Although amblyopes are generally believed to have impaired binocular vision, binocular summation was shown to be intact when stimuli were normalized for interocular sensitivity differences. An alternative account of amblyopia was developed, in which signals in the affected eye are subject to attenuation and additive noise prior to binocular combination.
Resumo:
We studied the rules by which visual responses to luminous targets are combined across the two eyes. Previous work has found very different forms of binocular combination for targets defined by increments and by decrements of luminance, with decrement data implying a severe nonlinearity before binocular combination. We ask whether this difference is due to the luminance of the target, the luminance of the background, or the sign of the luminance excursion. We estimated the pre-binocular nonlinearity (power exponent) by fitting a computational model to ocular equibrightness matches. The severity of the nonlinearity had a monotonic dependence on the signed difference between target and background luminance. For dual targets, in which there was both a luminance increment and a luminance decrement (e.g. contrast), perception was governed largely by the decrement. The asymmetry in the nonlinearities derived from the subjective matching data made a clear prediction for visual performance: there should be more binocular summation for detecting luminance increments than for detecting luminance decrements. This prediction was confirmed by the results of a subsequent experiment. We discuss the relation between these results and luminance nonlinearities such as a logarithmic transform, as well as the involvement of contemporary model architectures of binocular vision.
Resumo:
The optometric profession in the UK has a major role in the detection, assessment and management of ocular anomalies in children between 5 and 16 years of age. The role complements a variety of associated screening services provided across several health care sectors. The review examines the evidence-base for the content, provision and efficacy of these screening services in terms of the prevalence of anomalies such as refractive error, amblyopia, binocular vision and colour vision and considers the consequences of their curtailment. Vision screening must focus on pre-school children if the aim of the screening is to detect and treat conditions that may lead to amblyopia, whereas if the aim is to detect and correct significant refractive errors (not likely to lead to amblyopia) then it would be expedient for the optometric profession to act as the major provider of refractive (and colour vision) screening at 5-6 years of age. Myopia is the refractive error most likely to develop during primary school presenting typically between 8 and 12 years of age, thus screening at entry to secondary school is warranted. Given the inevitable restriction on resources for health care, establishing screening at 5 and 11 years of age, with exclusion of any subsequent screening, is the preferred option. © 2004 The College of Optometrists.
Resumo:
Golfers, coaches and researchers alike, have all keyed in on golf putting as an important aspect of overall golf performance. Of the three principle putting tasks (green reading, alignment and the putting action phase), the putting action phase has attracted the most attention from coaches, players and researchers alike. This phase includes the alignment of the club with the ball, the swing, and ball contact. A significant amount of research in this area has focused on measuring golfer’s vision strategies with eye tracking equipment. Unfortunately this research suffers from a number of shortcomings, which limit its usefulness. The purpose of this thesis was to address some of these shortcomings. The primary objective of this thesis was to re-evaluate golfer’s putting vision strategies using binocular eye tracking equipment and to define a new, optimal putting vision strategy which was associated with both higher skill and success. In order to facilitate this research, bespoke computer software was developed and validated, and new gaze behaviour criteria were defined. Additionally, the effects of training (habitual) and competition conditions on the putting vision strategy were examined, as was the effect of ocular dominance. Finally, methods for improving golfer’s binocular vision strategies are discussed, and a clinical plan for the optometric management of the golfer’s vision is presented. The clinical management plan includes the correction of fundamental aspects of golfers’ vision, including monocular refractive errors and binocular vision defects, as well as enhancement of their putting vision strategy, with the overall aim of improving performance on the golf course. This research has been undertaken in order to gain a better understanding of the human visual system and how it relates to the sport performance of golfers specifically. Ultimately, the analysis techniques and methods developed are applicable to the assessment of visual performance in all sports.
Resumo:
Background: The MacDQoL is an individualised measure of the impact of macular degeneration (MD) on quality of life (QoL). There is preliminary evidence of its psychometric properties and sensitivity to severity of MD. The aim of this study was to carry out further psychometric evaluation with a larger sample and investigate the measure's sensitivity to MD severity. Methods: Patients with MD (n = 156: 99 women, 57 men, mean age 79 ± 13 years), recruited from eye clinics (one NHS, one private) completed the MacDQoL by telephone interview and later underwent a clinic vision assessment including near and distance visual acuity (VA), comfortable near VA, contrast sensitivity, colour recognition, recovery from glare and presence or absence of distortion or scotoma in the central 10° of the visual field. Results: The completion rate for the MacDQoL items was 99.8%. Of the 26 items, three were dropped from the measure due to redundancy. A fourth was retained in the questionnaire but excluded when computing the scale score. Principal components analysis and Cronbach's alpha (0.944) supported combining the remaining 22 items in a single scale. Lower MacDQoL scores, indicating more negative impact of MD on QoL, were associated with poorer distance VA (better eye r = -0.431 p < 0.001; worse eye r = -0.350 p < 0.001; binocular vision r = -0.419 p < 0.001) and near VA (better eye r -0.326 p < 0.001; worse eye r = -0.226 p < 0.001; binocular vision r = -0.326 p < 0.001). Poorer MacDQoL scores were associated with poorer contrast sensitivity (better eye r = 0.392 p < 0.001; binocular vision r = 0.423 p < 0.001), poorer colour recognition (r = 0.417 p < 0.001) and poorer comfortable near VA (r = -0.283, p < 0.001). The MacDQoL differentiated between those with and without binocular scotoma (U = 1244 p < 0.001). Conclusion: The MacDQoL 22-item scale has excellent internal consistency reliability and a single-factor structure. The measure is acceptable to respondents and the generic QoL item, MD-specific QoL item and average weighted impact score are related to several measures of vision. The MacDQoL demonstrates that MD has considerable negative impact on many aspects of QoL, particularly independence, leisure activities, dealing with personal affairs and mobility. The measure may be valuable for use in clinical trials and routine clinical care. © 2005 Mitchell et al; licensee BioMed Central Ltd.
Resumo:
Binocular vision is traditionally treated as two processes: the fusion of similar images, and the interocular suppression of dissimilar images (e.g. binocular rivalry). Recent work has demonstrated that interocular suppression is phase-insensitive, whereas binocular summation occurs only when stimuli are in phase. But how do these processes affect our perception of binocular contrast? We measured perceived contrast using a matching paradigm for a wide range of interocular phase offsets (0–180°) and matching contrasts (2–32%). Our results revealed a complex interaction between contrast and interocular phase. At low contrasts, perceived contrast reduced monotonically with increasing phase offset, by up to a factor of 1.6. At higher contrasts the pattern was non-monotonic: perceived contrast was veridical for in-phase and antiphase conditions, and monocular presentation, but increased a little at intermediate phase angles. These findings challenge a recent model in which contrast perception is phase-invariant. The results were predicted by a binocular contrast gain control model. The model involves monocular gain controls with interocular suppression from positive and negative phase channels, followed by summation across eyes and then across space. Importantly, this model—applied to conditions with vertical disparity—has only a single (zero) disparity channel and embodies both fusion and suppression processes within a single framework.
Resumo:
A literature review revealed that very little work has been conducted to investigate the possible benefits of coloured interventions on reading performance in low vision due to ARMD, under conditions that are similar to the real world reading environment. Further studies on the use of colour, as a rehabilitative intervention in low vision would therefore be useful. A series of objective, subject based, age-similar controlled experiments were used to address the primary aims. Trends in some of the ARMD data suggested better reading performance with blue or green illuminance but there were also some individuals who performed better with yellow, or with illuminance of reduced intensity. Statistically, better reading in general occurred with a specialised yellow photochromic lens and also a clear lens than with a fixed lens or a neutral density filter. No reading advantage was gained from using the coloured screen facility of a video-magnifier. Some subjects with low vision were found to have co-existent binocular vision anomalies, which may have caused reading difficulties similar to those produced by ARMD. Some individuals with ARMD benefited from the use of increased local illuminance produced by either a standard tungsten or compact fluorescent lamp. No reading improvement occurred with a daylight simulation tungsten lamp. The Intuitive Colorimeter® can be used to detect and map out colour vision discrimination deficiency in ARMD and the Humphrey 630 Visual Field Analyser can be used to analyse the biocular visual field in subjects with ARMD. Some experiments highlighted a positive effect of a blue intervention in reading with ARMD.
Resumo:
The incipient phase of presbyopia represents a loss in accommodative amplitude of approximately 3 dioptres between the ages of 35 and 45 and is the prelude to the need for a reading addition. The need to maintain single binocular vision during this period requires re-calibration of the correspondence between accommodation and vergence response. No previous study has specifically attempted to correlate change in accommodative status with the profile of oculomotor responses occurring within the incipient phase of presbyopia. Measurements were made of the amplitude of accommodation, stimulus and response AC/A ratios, CA/C ratio, tonic accommodation, tonic vergence, proximal vergence, vergence adaptation and accommodative adaptation of 38 subjects. Twenty subjects were aged 35 to 45 years of age and 10 subjects were aged 20 to 30 years of age at the commencement of the study. The measurements were repeated at four-monthly intervals for a total of two years. The results of this study fail to support the Hess-Gullstrand theory of presbyopia with evidence that the effort to produce a unit change in accommodation increases with age. The data obtained has enabled the analysis of how each individual oculomotor function varies with the decline in amplitude of accommodation. MATLAB/SIMULINK software has been used to assist in the analysis and to allow the amendment of existing models to represent accurately the ageing oculomotor system. This study has proposed that with the decline in the amplitude of accommodation there is an increase in the accommodative convergence response per unit of accommodative response. To compensate for this increase, evidence has been found of a decrease in tonic vergence with age. If this decline in tonic vergence is not sufficient to counteract the increase in accommodative convergence, it is proposed that the near vision response is limited to the maximum vergence response that can be tolerated, with the resulting lower accommodative response being compensated for by an increase in the subjective depth-of-focus. When the blur due to the decrease in accommodative response can no longer be tolerated, the first reading addition will be required.
Resumo:
Under conditions of reduced visual stimulation, the systems of accommodation and vergence tend towards physiological resting states that are intermediate within their functional range. The terms tonic accommodation (TA) and tonic vergence (TV) are used in the study to describe these stimulus-free, intermediate adjustments and to represent the systems as being in a state of innervational tonicity. The literature relating to TA and TV and the various experiments of this thesis are reviewed. Methodology has been developed enabling the determination of TA and TV under conditions of total darknessl laser optometry for TA and ~ernier-alignment for TV. The thesis describes a series of experiments designed to investigate various aspects of TA and TV, and their role in ametropia, binocular vision and their adaptation to sustained visual tasks. Measurements of TA were also utilised to investigate the effect of various autonomic effector drugs on the ciliary muscle. The effects of ethanol on binocular function are shown to be directly proportional to the .initial level of TVJ which is itself unaffected. These results support the concept of TV as the reference point for normal vergence responses. The results of the pharmacological investigations indicate the presence of a small but significant, beta-receptor mediated inhibitory sympathetic input to the ciliary muscle, and that the wide distribution in TA is a consequence of inter-observer variations in parasympathetic, rather than sympathetic tone. Following interaction with visual tasks of t5mins duration, the levels of TA and TV are found to be biased in the direction of, and proportional to, the task position: except during near-task viewing where the task-to-TA stimulus-distance exceeds 1.5D (for TA) and 3.5deg (for TV). Under these conditions the expected level of bias is attenuated, Adaptive models are discussed, proposing TA and TV as the reference points of the accommodative and vergence system.
Resumo:
Purpose: Although significant amounts of vertical misalignment could have a noticeable effect on visual performance, there is no conclusive evidence about the effect of very small amount of vertical disparity on stereopsis and binocular vision. Hence, the aim of this study was to investigate the effects of induced vertical disparity on local and global stereopsis at near. Materials and Methods: Ninety participants wearing best-corrected refraction had local and global stereopsis tested with 0.5 and 1.0 prism diopter (Δ) vertical prism in front of their dominant and non-dominant eye in turn. This was compared to local and global stereopsis in the same subjects without vertical prism. Data were analyzed in SPSS.17 software using the independent samples T and the repeated measures ANOVA tests. Results: Induced vertical disparity decreases local and global stereopsis. This reduction is greater when vertical disparity is induced in front of the non-dominant eye and affects global more than local stereopsis. Repeated measures ANOVA showed differences in the mean stereopsis between the different measured states for local and global values. Local stereopsis thresholds were reduced by 10s of arc or less on average with 1.0Δ of induced vertical prism in front of either eye. However, global stereopsis thresholds were reduced by over 100s of arc by the same 1.0Δ of induced vertical prism. Conclusion: Induced vertical disparity affects global stereopsis thresholds by an order of magnitude (or a factor of 10) more than local stereopsis. Hence, using a test that measures global stereopsis such as the TNO is more sensitive to vertical misalignment than a test such as the Stereofly that measures local stereopsis. © 2014 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted.
Resumo:
Purpose: To evaluate distance and near image quality after hybrid bi-aspheric multifocal central presbyLASIK treatments. Design: Consecutive case series. Methods: Sixty-four eyes of 32 patients consecutively treated with central presbyLASIK were assessed. The mean age of the patients was 51 ± 3 years with a mean spherical equivalent refraction of-1.08 ± 2.62 diopters (D) and mean astigmatism of 0.52 ± 0.42 D. Monocular corrected distance visual acuity (CDVA), corrected near visual acuity (CNVA), and distance corrected near visual acuity (DCNVA) of nondominant eyes; binocular uncorrected distance visual acuity (UDVA); uncorrected intermediate visual acuity (UIVA); distance corrected intermediate visual acuity (DCIVA); and uncorrected near visual acuity (UNVA) were assessed pre- and postoperatively. Subjective quality of vision and near vision was assessed using the 10-item Rasch-scaled Quality of Vision and Near Activity Visual Questionnaire, respectively. Results: At 1 year postoperatively, 93% of patients achieved 20/20 or better binocular UDVA; 90% and 97% of patients had J2 or better UNVA and UIVA, respectively; 7% lost 2 Snellen lines of CDVA; Strehl ratio reduced by ~-4% ± 14%. Defocus curves revealed a loss of half a Snellen line at best focus, with no change for intermediate vergence (-1.25 D) and a mean gain of 2 lines for near vergence (-3 D). Conclusions: Presbyopic treatment using a hybrid bi-aspheric micro-monovision ablation profile is safe and efficacious. The postoperative outcomes indicate improvements in binocular vision at far, intermediate, and near distances with improved contrast sensitivity. A 19% retreatment rate should be considered to increase satisfaction levels, besides a 3% reversal rate.
Resumo:
Along with other diseases that can affect binocular vision, reducing the visual quality of a subject, Congenital Nystagmus (CN) is of peculiar interest. CN is an ocular-motor disorder characterized by involuntary, conjugated ocular oscillations and, while identified more than forty years ago, its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. The majority of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recordings are routinely employed, allowing physicians to extract and analyze nystagmus main features such as waveform shape, amplitude and frequency. Use of eye movement recording, opportunely processed, allows computing "estimated visual acuity" predictors, which are analytical functions that estimate expected visual acuity using signal features such as foveation time and foveation position variability. Hence, it is fundamental to develop robust and accurate methods to measure both those parameters in order to obtain reliable values from the predictors. In this chapter the current methods to record eye movements in subjects with congenital nystagmus will be discussed and the present techniques to accurately compute foveation time and eye position will be presented. This study aims to disclose new methodologies in congenital nystagmus eye movements analysis, in order to identify nystagmus cycles and to evaluate foveation time, reducing the influence of repositioning saccades and data noise on the critical parameters of the estimation functions. Use of those functions extends the information acquired with typical visual acuity measurement (e.g., Landolt C test) and could be a support for treatment planning or therapy monitoring. © 2010 by Nova Science Publishers, Inc. All rights reserved.