6 resultados para Bicyclo[3.2.1]octane neolignans

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel synthetic approach towards N1-alkylated 3-propyl-1,4-benzodiazepines was developed in five synthetic steps from 2-amino-4-chlorobenzophenone, in which the N-oxide 4 served as a key intermediate. The structure-activity relationship optimization of this 3-prophyl-1,4-benzodiazepine template was carried out on the N1-position by selective alkylation reactions and resulted in a ligand with an improved affinity on the cholecystokinin (CCK2) receptor. The N-allyl-3-propyl-benzodiazepine 6d displayed an affinity towards the CCK2 (CCK-B) receptor of 170 nM in a radiolabelled receptor-binding assay. The anxiolytic activity of this allyl-3-propyl-1,4-benzodiazepine 6d was subsequently determined in in-vivo psychotropic assays. This novel ligand had ED50 values of 4.7 and 5.2 mg kg-1 in the black and white box test and the x-maze, respectively, and no significant sedation/muscle relaxation was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple method for the synthesis of 3-substituted 5,6-dihydroimidazo[2,1-b]thiazoles is achieved by cyclocondensation of alkynyl(phenyl)iodonium salts with imidazolidine-2-thione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aims of this study were to establish the structure of the potent anticonvulsant enaminone methyl 4-(4′-bromophenyl)amino-6-methyl-2- oxocyclohex-3-en-1-oate (E139), and to determine the energetically preferred conformation of the molecule, which is responsible for the biological activity. Materials and Methods: The structure of the molecule was determined by X-ray crystallography. Theoretical ab initio calculations with different basis sets were used to compare the energies of the different enantiomers and to other structurally related compounds. Results: The X-ray crystal structure revealed two independent molecules of E139, both with absolute configuration C11(S), C12(R), and their inverse. Ab initio calculations with the 6-31G, 3-21G and STO-3G basis sets confirmed that the C11(S), C12(R) enantiomer with both substituents equatorial had the lowest energy. Compared to relevant crystal structures, the geometry of the theoretical structures shows a longer C-N and shorter C=O distance with more cyclohexene ring puckering in the isolated molecule. Conclusion: Based on a pharmacophoric model it is suggested that the enaminone system HN-C=C-C=O and the 4-bromophenyl group in E139 are necessary to confer anticonvulsant property that could lead to the design of new and improved anticonvulsant agents. Copyright © 2003 S. Karger AG, Basel.