4 resultados para Betta splendens - Larvicultura
em Aston University Research Archive
Resumo:
In a group of adult dyslexics word reading and, especially, word spelling are predicted more by what we have called lexical learning (tapped by a paired-associate task with pictures and written nonwords) than by phonological skills. Nonword reading and spelling, instead, are not associated with this task but they are predicted by phonological tasks. Consistently, surface and phonological dyslexics show opposite profiles on lexical learning and phonological tasks. The phonological dyslexics are more impaired on the phonological tasks, while the surface dyslexics are equally or more impaired on the lexical learning tasks. Finally, orthographic lexical learning explains more variation in spelling than in reading, and subtyping based on spelling returns more interpretable results than that based on reading. These results suggest that the quality of lexical representations is crucial to adult literacy skills. This is best measured by spelling and best predicted by a task of lexical learning. We hypothesize that lexical learning taps a uniquely human capacity to form new representations by recombining the units of a restricted set.
Resumo:
We investigated the ability to learn new words in a group of 22 adults with developmental dyslexia/dysgraphia and the relationship between their learning and spelling problems. We identified a deficit that affected the ability to learn both spoken and written new words (lexical learning deficit). There were no comparable problems in learning other kinds of representations (lexical/semantic and visual) and the deficit could not be explained in terms of more traditional phonological deficits associated with dyslexia (phonological awareness, phonological STM). Written new word learning accounted for further variance in the severity of the dysgraphia after phonological abilities had been partialled out. We suggest that lexical learning may be an independent ability needed to create lexical/formal representations from a series of independent units. Theoretical and clinical implications are discussed. © 2005 Psychology Press Ltd.
Resumo:
The present thesis tested the hypothesis of Stanovich, Siegel, & Gottardo (1997) that surface dyslexia is the result of a milder phonological deficit than that seen in phonological dyslexia coupled with reduced reading experience. We found that a group of adults with surface dyslexia showed a phonological deficit that was commensurate with that shown by a group of adults with phonological dyslexia (matched for chronological age and verbal and non-verbal IQ) and normal reading experience. We also showed that surface dyslexia cannot be accounted for by a semantic impairment or a deficit in the verbal learning and recall of lexical-semantic information (such as meaningful words), as both dyslexic subgroups performed the same. This study has replicated the results of our published study that surface dyslexia is not the consequence of a mild retardation or reduced learning opportunities but a separate impairment linked to a deficit in written lexical learning, an ability needed to create novel lexical representations from a series of unrelated visual units, which is independent from the phonological deficit (Romani, Di Betta, Tsouknida & Olson, 2008). This thesis also provided evidence that a selective nonword reading deficit in developmental dyslexia persists beyond poor phonology. This was shown by finding a nonword reading deficit even in the presence of normal regularity effects in the dyslexics (when compared to both reading and spelling-age matched controls). A nonword reading deficit was also found in the surface dyslexics. Crucially, this deficit was as strong as in the phonological dyslexics despite better functioning of the sublexical route for the former. These results suggest that a nonword reading deficit cannot be solely explained by a phonological impairment. We, thus, suggested that nonword reading should also involve another ability relating to the processing of novel visual orthographic strings, which we called 'orthographic coding'. We then investigated the ability to process series of independent units within multi-element visual arrays and its relationship with reading and spelling problems. We identified a deficit in encoding the order of visual sequences (involving both linguistic and nonlinguistic information) which was significantly associated with word and nonword processing. More importantly, we revealed significant contributions to orthographic skills in both dyslexic and control individuals, even after age, performance IQ and phonological skills were controlled. These results suggest that spelling and reading do not only tap phonological skills but also order encoding skills.
Resumo:
We report the performance of a group of adult dyslexics and matched controls in an array-matching task where two strings of either consonants or symbols are presented side by side and have to be judged to be the same or different. The arrays may differ either in the order or identity of two adjacent characters. This task does not require naming – which has been argued to be the cause of dyslexics’ difficulty in processing visual arrays – but, instead, has a strong serial component as demonstrated by the fact that, in both groups, Reaction times (RTs) increase monotonically with position of a mismatch. The dyslexics are clearly impaired in all conditions and performance in the identity conditions predicts performance across orthographic tasks even after age, performance IQ and phonology are partialled out. Moreover, the shapes of serial position curves are revealing of the underlying impairment. In the dyslexics, RTs increase with position at the same rate as in the controls (lines are parallel) ruling out reduced processing speed or difficulties in shifting attention. Instead, error rates show a catastrophic increase for positions which are either searched later or more subject to interference. These results are consistent with a reduction in the attentional capacity needed in a serial task to bind together identity and positional information. This capacity is best seen as a reduction in the number of spotlights into which attention can be split to process information at different locations rather than as a more generic reduction of resources which would also affect processing the details of single objects.