32 resultados para Benchmark of Energy consumption
em Aston University Research Archive
Resumo:
Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.
Resumo:
The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.
Resumo:
This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.
Resumo:
A study is reported that examines the effect of caffeine consumption on majority and minority influence. In a double blind procedure, 72 participants consumed an orange drink, which either contained caffeine (3.5mg per kilogram of body weight) or did not (placebo). After a 40-minute delay, participants read a counter-attitudinal message (antivoluntary euthanasia) endorsed by either a numerical majority or minority. Both direct (message issue, i.e., voluntary euthanasia) and indirect (message issue-related, i.e., abortion) change was assessed by attitude scales completed before and after exposure to the message. In the placebo condition, the findings replicated the predictions of Moscovici's (1980) conversion theory; namely, majorities leading to compliance (direct influence) and minorities leading to conversion (indirect influence). When participants had consumed caffeine, majorities not only led to more direct influence than in the placebo condition but also to indirect influence. Minorities, by contrast, had no impact on either level of influence. The results suggest that moderate levels of caffeine increase systematic processing of the message but the consequences of this vary for each source. When the source is a majority there was increased indirect influence while for a minority there was decreased indirect influence. The results show the need to understand how contextual factors can affect social influence processes.
Resumo:
Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.
Resumo:
There has been negligible adoption of combined heat and power (CHP) for district heating (DH) in Britain, despite continued advocacy. This thesis constructs an account of the treatment of the option, and devises a framework for explanation. Analysis of technological development and adoption, it is argued, should be similar to that of other social processes, and be subject to the same requirements and criticisms. They will, however, show features peculiar to the institutions developing and selecting technologies, their relation to different social groups, and the forms of knowledge in and about technology. Conventional approaches - organisation and interorganisation theories, and analyses of policy-making - give useful insights but have common limitations. Elements of an analytical framework situating detailed issues and outcomes in a structured historical context are derived from convergent radical critiques. Thus activity on CHP/DH is essentially shaped by the development and relations of energy sector institutions: central and local government, nationalised industries and particularly the electricity industry. Analysis of them is related to the specific character of the British state. A few CHP and DH installations were tried before 1940. During postwar reconstruction, extensive plans for several cities were abandoned or curtailed. In the 1960s and 70s, many small non-CHP DH schemes were installed on housing estates. From the mid-70s, the national potential of CHP/DH has been reappraised, with widespread support and favourable evaluations, but little practical progress. Significant CHP/DH adoption is shown to have been systematically excluded ultimately by the structure of energy provision; centralised production interests dominate and co-ordination is weak. Marginal economics and political commitment have allowed limited development in exceptional circumstances. Periods of upheaval provided greater opportunity and incentive for CHP/DH but restructuring eventually obstructed it. Explanation of these outcomes is shown to require analysis at several levels, from broad context to detailed action.
Resumo:
We present the results of comparative numerical study of femtosecond laser inscription for fundamental and second harmonic of Yb-doped laser. We have found that second harmonic is more efficient in terms of amount of absorbed energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication. We observed the different size of modified domain on initial pulse energy and different spectrum dynamics during the pulse propagation for fundamental and second harmonics.
Efficiency of energy deposition by fundamental and second harmonics in femtosecond laser inscription
Resumo:
We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy
Resumo:
We present the results of comparative numerical study of energy deposition in single shot femtosecond laser inscription for fundamental and second harmonic of Yb-doped fiber laser. We have found that second harmonic is more efficient in absorbing energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication.
Resumo:
The use of the pyrolysis process to obtain valuable products from biomass is amongst the technologies being investigated as a source for renewable energy. The pyrolysis process yields products such as biochar, bio-oil and non condensable gases. The main objective of this project is to increase energy recovery from sewage sludge by utilising the intermediate pyrolysis process. The intermediate pyrolysis has a residence time ranging from 5 to 10 minutes. The main product yields from sewage sludge pyrolysis are 50 wt% biochar, 40 wt% bio-oil and 10 wt% non condensable gases. The project was carried out on a pilot plant scale reactor with a load capacity of 20 kg/h. This enabled a high yield of biochar and bio-oil. The characterisation of the products indicated that the organic phase of the bio-oil had good fuel properties such as having high energy content of 39 MJ/kg, low acid number of 21.5, high flash point of 150 and viscosity of 35 cSt. An increase in pyrolysis experiments enabled large quantities of pyrolysis oil production. Co-pyrolysis of sewage sludge was carried out on laboratory scale with mixed wood, rapeseed and straw. It found that there was an increase in bio-oil quantity with rapeseed while co-pyrolysis with wood helped to mask the smell of the sludge pyrolysis oil. Engine test were successfully carried out in an old Lister engine with pyrolysis oil fractions of 30% and 50% blended with biodiesel. This indicates that these pyrolysis oil fractions can be used in similar engine types without any problems however long term effects in ordinary engines are unknown. An economic evaluation was carried out about the implementation of the intermediate pyrolysis process for electricity production in a CHP using the pyrolysis oil. The prices of electricity per kWh were found to be very high.