48 resultados para Bell-Shaped Tuning
em Aston University Research Archive
Resumo:
The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the 'chymotrypsin-like' enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia. © 2002 Cancer Research UK.
Resumo:
Loss of skeletal muscle is a major factor in the poor survival of patients with cancer cachexia. This study examines the mechanism of catabolism of skeletal muscle by a tumour product, proteolysis-inducing factor (PIF). Intravenous administration of PIF to normal mice produced a rapid decrease in body weight (1.55 ± 0.12 g in 24 h) that was accompanied by increased mRNA levels for ubiquitin, the Mr 14 000 ubiquitin carrier-protein, E2, and the C9 proteasome subunit in gastrocnemius muscle. There was also increased protein levels of the 20S proteasome core and 19S regulatory subunit, detectable by immunoblotting, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. An increased protein catabolism was also seen in C2C12 myoblasts within 24 h of PIF addition with a bell-shaped dose-response curve and a maximal effect at 2-4 nM. The enhanced protein degradation was attenuated by anti-PIF antibody and by the proteasome inhibitors MG115 and lactacystin. Glycerol gradient analysis of proteasomes from PIF-treated cells showed an elevation in chymotrypsin-like activity, while Western analysis showed a dose-related increase in expression of MSSI, an ATPase that is a regulatory subunit of the proteasome, with a dose-response curve similar to that for protein degradation. These results confirm that PIF acts directly to stimulate the proteasome pathway in muscle cells and may play a pivotal role in protein catabolism in cancer cachexia. © 2001 Cancer Research Campaign.
Resumo:
This study was undertaken to increase knowledge of the mechanisms of inter- and intracellular signalling in the gastrointestinal tract. Specific aims were: to use cell lines to elucidate factors affecting growth of gastric cells, to investigate the distribution and aspects of function of isoforms of protein kinase C in a gastric cell line and in the rat gastrointestinal tract and to determine the presence and regulation of nitric oxide synthase in gastrointestinal tissues from the rat and in cell lines. The gastric cancer cell line HGT-1 was used to investigate control of growth. Increases in cell number were found to be dependent on the seeding density of the cells. In cells plated at low density insulin, epidermal growth factor and gastrin all increased cell number. Gastrin produced a bell-shaped dose response curve with a maximum activity at 5nM. No effect of gastrin was apparent in cells plated at high density. α and β isoforms of protein kinase C were found, by immunoblotting procedures, to be widespread in the gastrointestinal tract of the rat, but protein kinase Cε was confined to the gastric mucosa and gastrointestinal smooth muscle. HGT-1 cells contained protein kinase C α and ε but β or γ were not detected. Preincubation of HGT-1 cells for 24h with 1μM phorbol-12,13-dibutyrate down-regulated protein kinase C α but not ε. The inhibition by the activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate (TPA) of the histamine-stimulated increase in cAMP in HGT-1 cells was down regulated by phorbol-12,13-dibutyrate. Inhibition of histamine-stimulation of adenylate cyclase by TPA was Ca2+-dependent and inhibited by the addition of an antibody to protein kinase C α. A role for protein kinase C α in modulating the effect of histamine on adenylate cyclase in HGT-1 cells is suggested. No nitric oxide synthase activity was detected in the gastrointestinal cell lines HGT-l, MKN-45 or CaCo-2. Ca2+-dependent nitric oxide synthase activity was observed in the gastric mucosa and the gastrointestinal smooth muscle from stomach to colon. The gastric: mucosal enzyme was soluble and showed half-maximal activity at 400nM Ca2+. Pretreatment of rats with endotoxin (3mg/kg body weight) induced nitric oxide synthase activity in both jejunal, ileal and colonic mucosa and muscle. A major portion of the induced activity in ileal and colonic mucosa was Ca2+-independent. Nitric oxide synthase activity in a high-density fraction of gastric mucosal cells was inhibited in a dose-dependent fashion by L-nitroarginine, NG-monomethyl-L-arginine, trifluoperazine and L-canavanine (in descending order of potency). Preincubation with okadaic acid and addition of ATPlMg2+ to the homogenisation buffer inhibited enzyme activity, which implies that phosphorylation inhibits gastric mucosal nitric oxide synthase.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm·m for curvature and 2.2×10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.
Resumo:
We have designed and fabricated a new type of fibre Bragg grating (FBG) with a V-shaped dispersion profile for multi-channel dispersion compensation in communication links.
Resumo:
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.
Resumo:
We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices.
Resumo:
Supercontinuum generation in ultra-long Raman fibre laser cavities is compared for a range of fibre dispersions in the anomalous and normal regimes. For normal dispersion improved performance and efficiency is achieved using dual wavelength pumping.
Resumo:
Mock circulation loops are used to evaluate the performance of cardiac assist devices prior to animal and clinical testing. A compressible, translucent silicone ventricle chamber that mimics the exact size, shape and motion of a failing heart is desired to assist in flow visualization studies around inflow cannulae during VAD support. The aim of this study was therefore to design and construct a naturally shaped flexible left ventricle and evaluate its performance in a mock circulation loop. The ventricle shape was constructed by the use of CT images taken from a patient experiencing cardiomyopathic heart failure and used to create a 3D image and subsequent mould to produce a silicone ventricle. Different cardiac conditions were successfully simulated to validate the ventricle performance, including rest, left heart failure and VAD support.
Resumo:
The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase transitions as the length of the coding window is varied. We postulate, using the mammalian auditory system as an example, that the presence of a subpopulation structure within a neural population is consistent with an optimal neural code.
Resumo:
This thesis describes an analytical and experimental study to determine the mechanical characteristics of the pump mounting, bell housing type. For numerical purposes, the mount was modelled as a thin circular cylindrical shell with cutouts, stiffened with rings and stringers; the boundary conditions were considered to be either clamped-free or clamped-supporting rigid heavy mass. The theoretical study was concerned with both the static response and the free vibration characteristics of the mount. The approach was based on the Rayleigh-Ritz approximation technique using beam characteristic (axial) and trigonometric (Circumferential) functions in the displacement series, in association with the Love - Timoshenko thin shell theory. Studies were carried out to determine the effect of the supported heavy mass on the static response, frequencies and mode shapes; in addition, the effects of stringers, rings and cutouts on vibration characteristics were investigated. The static and dynamic formulations were both implemented on the Hewlett Packard 9845 computer. The experimental study was conducted to evaluate the results of the natural frequencies and mode shapes, predicted numerically. In the experimental part, a digital computer was used as an experiment controller, which allowed accurate and quick results. The following observations were made: 1. Good agreements were obtained with the results of other investigators. 2. Satisfactory agreement was achieved between the theoretical and experimental results. 3. Rings coupled the axial modal functions of the plain cylinder and tended to increase frequencies, except for the torsion modes where frequencies were reduced. Stringers coupled the circumferential modal functions and tended to decrease frequencies. The effect of rings was stronger than that of stringers. 4. Cutouts tended to reduce frequencies; in general, but this depends on the location of the cutouts; if they are near the free edge then an increase in frequencies is obtained. Cutouts coupled both axial and circumferential modal functions. 5. The supported heavy mass had similar effects to those of the rings, but in an exaggerated manner, particularly in the reduction of torsion frequencies. 6. The method of analysis was found to be a convenient analytical tool for estimating the overall behaviour of the shell with cutouts.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm · m for curvature and 2.2 × 10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
The locus of origin of the pattern evoked electroretinogram, (PERG), has been the subject of considerable discussion. A novel approach was adopted in this study to further elaborate the nature of the PERG evoked by pattern onset/offset presentation. The PERG was found to be linearly related to stimulus contrast and in particular was linearly related to the temporal contrast of the retinal image, when elicited by patterns of low spatial frequency. At high spatial frequencies the retinal image contrast is significantly reduced because of optical degradation. This is described by the eye's modulation transfer function (MTF). The retinal contrast of square wave grating and chequerboard patterns of increasing spatial frequency were found by filtering their Fourier transforms by the MTF. The filtered pattern harmonics were then resynthesised to constitute a profile of retinal image illuminance from which the temporal and spatial contrast of the image could be calculated. If the PERG is a pure illuminance response it should be spatially insensitive and dependent upon the temporal contrast of stimulation. The calculated loss of temporal contrast for finer patterns was expressed as a space-averaged temporal contrast attentuation factor. This factor, applied to PERGs evoked by low spatial frequency patterns, was used to predict the retinal illuminance response elicited by a finer pattern. The predicted response was subtracted from the recorded signal and residual waveform was proposed to represent specific activity. An additional correction for the attenuation of spatial contrast was applied to the extracted pattern specific response. Pattern specific responses computed for different spatial frequency patterns in this way are the predicted result of iso-contrast pattern stimulation. The pattern specific responses demonstrate a striking bandpass spatial selectivity which peaks at higher spatial frequencies in the more central retina. The variation of spatial sensitivity with eccentricity corresponds closely with estimated ganglion receptive field centre separation and psychophysical data. The variation of retinal structure with eccentricity, in the form of the volumes of the nuclear layers, was compared with the amplitudes of the computed retinal illuminance and pattern specific responses. The retinal illuminance response corresponds more closely to the outer and inner nuclear layers whilst the pattern specific response appears more closely related to the ganglion cell layer. In general the negative response transients correspond to the more proximal retinal layers. This thesis therefore supports the proposed contribution of proximal retinal cell activity to the PERG and describes techniques which may be further elaborated for more detailed studies of retinal receptive field dimensions.