6 resultados para Beets and beet sugar.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of the general chromatographic theory and of continuous chromatographic techniques has been carried out. Three methods of inversion of sucrose to glucose and fructose in beet molasses were explored. These methods were the inversion of sucrose using the enzyme invertase, by the use of hydrochloric acid and the use of the resin Amberlite IR118 in the H+ form. The preferred method on economic and purity considerations was by the use of the enzyme invertase. The continuous chromatographic separation of inverted beet molasses resulting in a fructose rich product and a product containing glucose and other non-sugars was carried out using a semi-continuous counter-current chromatographic refiner (SCCR6), consisting of ten 10.8cm x 75cm long stainless steel columns packed with a calcium charged 8% cross-linked polystyrene resin Zerolit SRC 14. Based on the literature this is the first time such a continuous separation has been attempted. It was found that the cations present in beet molasses displaced the calcium ions from the resin resulting in poor separation of the glucose and fructose. Three methods of maintaining the calcium form of the resin during the continuous operation of the equipment were established. Passing a solution of calcium nitrate through the purge column for half a switch period was found to be most effective as there was no contamination of the main fructose rich product and the product concentrations were increased by 50%. When a 53% total solids (53 Brix) molasses feedstock was used, the throughput was 34.13kg sugar solids per m3 of resin per hour. Product purities of 97% fructose in fructose rich (FRP) and 96% glucose in the glucose rich (GRP) products were obtained with product concentrations of 10.93 %w/w for the FRP and 10.07 %w/w for the GRP. The effects of flowrates, temperature and background sugar concentration on the distribution coefficients of fructose, glucose, betaine and an ionic component of beet molasses were evaluated and general relationships derived. The computer simulation of inverted beet molasses separations on an SCCR system has been carried out successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistence of Salmonella spp. in low moisture foods is a challenge for the food industry as despite control strategies already in place, notable outbreaks still occur. The aim of this study was to characterise isolates of Salmonella, known to be persistent in the food manufacturing environment, by comparing their microbiological characteristics with a panel of matched clinical and veterinary isolates. The gross morphology of the challenge panel was phenotypically characterised in terms of cellular size, shape and motility. In all the parameters measured, the factory isolates were indistinguishable from the human, clinical and veterinary strains. Further detailed metabolic profiling was undertaken using the biolog Microbial ID system. Multivariate analysis of the metabolic microarray revealed differences in metabolism of the factory isolate of S.Montevideo, based on its upregulated ability to utilise glucose and the sugar alcohol groups. The remainder of the serotype-matched isolates were metabolically indistinguishable. Temperature and humidity are known to influence bacterial survival and through environmental monitoring experimental parameters were defined. The results revealed Salmonella survival on stainless steel was affected by environmental temperatures that may be experienced in a food processing environment; with higher survival rates (D25=35.4) at temperatures at 25°C and lower humidity levels of 15% RH, however a rapid decline in cell count (D10=3.4) with lower temperatures of 10°C and higher humidity of 70% RH. Several resident factories strains survived in higher numbers on stainless steel (D25=29.69) compared to serotype matched clinical and veterinary isolates (D25=22.98). Factory isolates of Salmonella did not show an enhanced growth rate in comparison to serotype matched solates grown in Luria broth, Nutrient broth and M9 minimal media indicating that as an independent factor, growth was unlikely to be a major factor driving Salmonella persistence. Using a live / dead stain coupled with fluorescence microscopy revealed that when no longer culturable, isolates of S.Schwarzengrund entered into a viable nonculturable state. The biofilm forming capacity of the panel was characterised and revealed that all were able to form biofilms. None of the factory isolates showed an enhanced capability to form biofilms in comparison to serotype-matched isolates. In disinfection studies, planktonic cells were more susceptible to disinfectants than cells in biofilm and all the disinfectants tested were successful in reducing bacterial load. Contact time was one of the most important factors for reducing bacterial populations in a biofilm. The genomes of eight strains were sequenced. At the nucleotide and amino acid level the food factory isolates were similar to those of isolates from other environments; no major genomic rearrangements were observed, supporting the conclusions of the phenotypic and metabolic analysis. In conclusion, having investigated a variety of morphological, biochemical and genomic factors, it is unlikely that the persistence of Salmonella in the food manufacturing environment is attributable to a single phenotypic, metabolic or genomic factor. Whilst a combination of microbiological factors may be involved it is also possible that strain persistence in the factory environment is a consequence of failure to apply established hygiene management principles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circulating low density lipoproteins (LDL) are thought to play a crucial role in the onset and development of atherosclerosis, though the detailed molecular mechanisms responsible for their biological effects remain controversial. The complexity of biomolecules (lipids, glycans and protein) and structural features (isoforms and chemical modifications) found in LDL particles hampers the complete understanding of the mechanism underlying its atherogenicity. For this reason the screening of LDL for features discriminative of a particular pathology in search of biomarkers is of high importance. Three major biomolecule classes (lipids, protein and glycans) in LDL particles were screened using mass spectrometry coupled to liquid chromatography. Dual-polarity screening resulted in good lipidome coverage, identifying over 300 lipid species from 12 lipid sub-classes. Multivariate analysis was used to investigate potential discriminators in the individual lipid sub-classes for different study groups (age, gender, pathology). Additionally, the high protein sequence coverage of ApoB-100 routinely achieved (≥70%) assisted in the search for protein modifications correlating to aging and pathology. The large size and complexity of the datasets required the use of chemometric methods (Partial Least Square-Discriminant Analysis, PLS-DA) for their analysis and for the identification of ions that discriminate between study groups. The peptide profile from enzymatically digested ApoB-100 can be correlated with the high structural complexity of lipids associated with ApoB-100 using exploratory data analysis. In addition, using targeted scanning modes, glycosylation sites within neutral and acidic sugar residues in ApoB-100 are also being explored. Together or individually, knowledge of the profiles and modifications of the major biomolecules in LDL particles will contribute towards an in-depth understanding, will help to map the structural features that contribute to the atherogenicity of LDL, and may allow identification of reliable, pathology-specific biomarkers. This research was supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Program (IEF 255076). Work of A. Rudnitskaya was supported by Portuguese Science and Technology Foundation, through the European Social Fund (ESF) and "Programa Operacional Potencial Humano - POPH".

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose – The data used in this study is for the period 1980-2000. Almost midway through this period (in 1992), the Kenyan government liberalized the sugar industry and the role of the market increased, while the government's role with respect to control of prices, imports and other aspects in the sector declined. This exposed the local sugar manufacturers to external competition from other sugar producers, especially from the COMESA region. This study aims to find whether there were any changes in efficiency of production between the two periods (pre and post-liberalization). Design/methodology/approach – The study utilized two methodologies to efficiency estimation: data envelopment analysis (DEA) and the stochastic frontier. DEA uses mathematical programming techniques and does not impose any functional form on the data. However, it attributes all deviation from the mean function to inefficiencies. The stochastic frontier utilizes econometric techniques. Findings – The test for structural differences in the two periods does not show any statistically significant differences between the two periods. However, both methodologies show a decline in efficiency levels from 1992, with the lowest period experienced in 1998. From then on, efficiency levels began to increase. Originality/value – To the best of the authors' knowledge, this is the first paper to use both methodologies in the sugar industry in Kenya. It is shown that in industries where the noise (error) term is minimal (such as manufacturing), the DEA and stochastic frontier give similar results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Fmoc synthetic strategy was employed to synthesise two identical combinatorial peptide libraries on a hydrophilic PEG-PS resin. One library was appended with boronic acid moieties at two positionally-fixed locations. Successful inclusion of the boronic acid units was confirmed using a novel UV fluorescent colorimetric assay employing carminic acid as the dye compound. A study of the effect had by the resin-bound peptides bearing boronic acid groups on the binding characteristics of vancomycin, a medically relevant antibiotic glycoprotein, was conducted. In all, 132 library compounds were tested for their binding affinity with vancomycin, via immobilisation of the glycopeptide onto the solid support through hydrogen bonding or complexation with the boronic acid moieties. Subsequent cleavage via acidolysis afforded vancomycin containing solutions which were quantified by growth inhibition of methicillin susceptible Staphylococcus aureus. Comparison of the diameters of the resultant zones of inhibition and those produced by vancomycin of known concentrations afforded a means of calculating the vancomycin concentration of the cleavage solutions, and thereby determining the binding affinity of vancomycin to each peptide sequence. Five peptide sequences and twenty one of the peptidyl-boronic acid sequences showed zones of inhibition, demonstrating their reversible affinity for vancomycin. Three peptide sequences showed zones of inhibition in both libraries. The presence of boronic acid was therefore shown to impart, enhance, detract and remove the affinity of vancomycin to a range of resin-bound peptide sequences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.