45 resultados para Bayesian hierarchical models

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a comparative study of three closely related Bayesian models for unsupervised document level sentiment classification, namely, the latent sentiment model (LSM), the joint sentiment-topic (JST) model, and the Reverse-JST model. Extensive experiments have been conducted on two corpora, the movie review dataset and the multi-domain sentiment dataset. It has been found that while all the three models achieve either better or comparable performance on these two corpora when compared to the existing unsupervised sentiment classification approaches, both JST and Reverse-JST are able to extract sentiment-oriented topics. In addition, Reverse-JST always performs worse than JST suggesting that the JST model is more appropriate for joint sentiment topic detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, we have developed the hierarchical Generative Topographic Mapping (HGTM), an interactive method for visualization of large high-dimensional real-valued data sets. In this paper, we propose a more general visualization system by extending HGTM in three ways, which allows the user to visualize a wider range of data sets and better support the model development process. 1) We integrate HGTM with noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM). This enables us to visualize data of inherently discrete nature, e.g., collections of documents, in a hierarchical manner. 2) We give the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode, the user selects "regions of interest," whereas in the automatic mode, an unsupervised minimum message length (MML)-inspired construction of a mixture of LTMs is employed. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. 3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualization plots, since they can highlight the boundaries between data clusters. We illustrate our approach on a toy example and evaluate it on three more complex real data sets. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retrieval of wind fields from scatterometer observations has traditionally been separated into two phases; local wind vector retrieval and ambiguity removal. Operationally, a forward model relating wind vector to backscatter is inverted, typically using look up tables, to retrieve up to four local wind vector solutions. A heuristic procedure, using numerical weather prediction forecast wind vectors and, often, some neighbourhood comparison is then used to select the correct solution. In this paper we develop a Bayesian method for wind field retrieval, and show how a direct local inverse model, relating backscatter to wind vector, improves the wind vector retrieval accuracy. We compare these results with the operational U.K. Meteorological Office retrievals, our own CMOD4 retrievals and a neural network based local forward model retrieval. We suggest that the neural network based inverse model, which is extremely fast to use, improves upon current forward models when used in a variational data assimilation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two probabilistic interpretations of the n-tuple recognition method are put forward in order to allow this technique to be analysed with the same Bayesian methods used in connection with other neural network models. Elementary demonstrations are then given of the use of maximum likelihood and maximum entropy methods for tuning the model parameters and assisting their interpretation. One of the models can be used to illustrate the significance of overlapping n-tuple samples with respect to correlations in the patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of evaluating different learning rules and other statistical estimators is analysed. A new general theory of statistical inference is developed by combining Bayesian decision theory with information geometry. It is coherent and invariant. For each sample a unique ideal estimate exists and is given by an average over the posterior. An optimal estimate within a model is given by a projection of the ideal estimate. The ideal estimate is a sufficient statistic of the posterior, so practical learning rules are functions of the ideal estimator. If the sole purpose of learning is to extract information from the data, the learning rule must also approximate the ideal estimator. This framework is applicable to both Bayesian and non-Bayesian methods, with arbitrary statistical models, and to supervised, unsupervised and reinforcement learning schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generalized linear regression models. We provide insights into the dependence of the error bars on the location of the data points and we derive an upper bound on the true error bars in terms of the contributions from individual data points which are themselves easily evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the dependence of Bayesian error bars on the distribution of data in input space. For generalized linear regression models we derive an upper bound on the error bars which shows that, in the neighbourhood of the data points, the error bars are substantially reduced from their prior values. For regions of high data density we also show that the contribution to the output variance due to the uncertainty in the weights can exhibit an approximate inverse proportionality to the probability density. Empirical results support these conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization has proven to be a powerful and widely-applicable tool the analysis and interpretation of data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space. However, for complex data sets living in a high-dimensional space it is unlikely that a single two-dimensional projection can reveal all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be visualized at the top level, with clusters and sub-clusters of data points visualized at deeper levels. The algorithm is based on a hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximization algorithm. We demonstrate the principle of the approach first on a toy data set, and then apply the algorithm to the visualization of a synthetic data set in 12 dimensions obtained from a simulation of multi-phase flows in oil pipelines and to data in 36 dimensions derived from satellite images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.