13 resultados para Bayesian hierarchical model
em Aston University Research Archive
Resumo:
Using survey data from 358 online customers, the study finds that the e-service quality construct conforms to the structure of a third-order factor model that links online service quality perceptions to distinct and actionable dimensions, including (1) website design, (2) fulfilment, (3) customer service, and (4) security/privacy. Each dimension is found to consist of several attributes that define the basis of e-service quality perceptions. A comprehensive specification of the construct, which includes attributes not covered in existing scales, is developed. The study contrasts a formative model consisting of 4 dimensions and 16 attributes against a reflective conceptualization. The results of this comparison indicate that studies using an incorrectly specified model overestimate the importance of certain e-service quality attributes. Global fit criteria are also found to support the detection of measurement misspecification. Meta-analytic data from 31,264 online customers are used to show that the developed measurement predicts customer behavior better than widely used scales, such as WebQual and E-S-Qual. The results show that the new measurement enables managers to assess e-service quality more accurately and predict customer behavior more reliably.
Resumo:
We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of segmentations. Markov Random Fields (MRFs) have been used to incorporate some of this prior knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels, and higher levels correspond to downsampled versions of the image. The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact. In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and the EM algorithm and (b) emphconditional maximum likelihood (CML). Segmentations obtained using networks trained by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the methods on a real-world outdoor-scene segmentation task.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.
Resumo:
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Resumo:
The sheer volume of citizen weather data collected and uploaded to online data hubs is immense. However as with any citizen data it is difficult to assess the accuracy of the measurements. Within this project we quantify just how much data is available, where it comes from, the frequency at which it is collected, and the types of automatic weather stations being used. We also list the numerous possible sources of error and uncertainty within citizen weather observations before showing evidence of such effects in real data. A thorough intercomparison field study was conducted, testing popular models of citizen weather stations. From this study we were able to parameterise key sources of bias. Most significantly the project develops a complete quality control system through which citizen air temperature observations can be passed. The structure of this system was heavily informed by the results of the field study. Using a Bayesian framework the system learns and updates its estimates of the calibration and radiation-induced biases inherent to each station. We then show the benefit of correcting for these learnt biases over using the original uncorrected data. The system also attaches an uncertainty estimate to each observation, which would provide real world applications that choose to incorporate such observations with a measure on which they may base their confidence in the data. The system relies on interpolated temperature and radiation observations from neighbouring professional weather stations for which a Bayesian regression model is used. We recognise some of the assumptions and flaws of the developed system and suggest further work that needs to be done to bring it to an operational setting. Such a system will hopefully allow applications to leverage the additional value citizen weather data brings to longstanding professional observing networks.
Resumo:
Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.
Resumo:
Visualization has proven to be a powerful and widely-applicable tool the analysis and interpretation of data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space. However, for complex data sets living in a high-dimensional space it is unlikely that a single two-dimensional projection can reveal all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be visualized at the top level, with clusters and sub-clusters of data points visualized at deeper levels. The algorithm is based on a hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximization algorithm. We demonstrate the principle of the approach first on a toy data set, and then apply the algorithm to the visualization of a synthetic data set in 12 dimensions obtained from a simulation of multi-phase flows in oil pipelines and to data in 36 dimensions derived from satellite images.
Resumo:
Following adaptation to an oriented (1-d) signal in central vision, the orientation of subsequently viewed test signals may appear repelled away from or attracted towards the adapting orientation. Small angular differences between the adaptor and test yield 'repulsive' shifts, while large angular differences yield 'attractive' shifts. In peripheral vision, however, both small and large angular differences yield repulsive shifts. To account for these tilt after-effects (TAEs), a cascaded model of orientation estimation that is optimized using hierarchical Bayesian methods is proposed. The model accounts for orientation bias through adaptation-induced losses in information that arise because of signal uncertainties and neural constraints placed upon the propagation of visual information. Repulsive (direct) TAEs arise at early stages of visual processing from adaptation of orientation-selective units with peak sensitivity at the orientation of the adaptor (theta). Attractive (indirect) TAEs result from adaptation of second-stage units with peak sensitivity at theta and theta+90 degrees , which arise from an efficient stage of linear compression that pools across the responses of the first-stage orientation-selective units. A spatial orientation vector is estimated from the transformed oriented unit responses. The change from attractive to repulsive TAEs in peripheral vision can be explained by the differing harmonic biases resulting from constraints on signal power (in central vision) versus signal uncertainties in orientation (in peripheral vision). The proposed model is consistent with recent work by computational neuroscientists in supposing that visual bias reflects the adjustment of a rational system in the light of uncertain signals and system constraints.
Resumo:
This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the posterior distributions in closed form, based on solving an optimisation problem, in a spirit similar to 3D VAR analysis, but seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is used to estimate the advection field based on the assimilated precipitation fields at two times. The model is applied to tracking precipitation dynamics in a realistic setting, using UK Met Office radar data from both a summer convective event and a winter frontal event. The performance of the model is assessed both traditionally and using probabilistic measures of fit based on ROC curves. The model is shown to provide very good assimilation characteristics, and promising forecast skill. Improvements to the forecasting scheme are discussed
Resumo:
Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.
Resumo:
Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic precalibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section of the M40 motorway and its surrounding area in the U.K. The efficiency of the method stems from the use of emulators of the stochastic microsimulator, which provides fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator runs required, and the emulators' probabilistic construction allows for the consideration of the extra uncertainty introduced by the approximation. It is shown that automatic precalibration of this real-world microsimulator, using turn-count observational data, is possible, considering all parameters at once, and that this precalibrated microsimulator improves on the fit to observations compared with the traditional expertly tuned microsimulation. © 2000-2011 IEEE.
Resumo:
Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.