24 resultados para Bayesian Population Modelling
em Aston University Research Archive
Resumo:
The generation of very short range forecasts of precipitation in the 0-6 h time window is traditionally referred to as nowcasting. Most existing nowcasting systems essentially extrapolate radar observations in some manner, however, very few systems account for the uncertainties involved. Thus deterministic forecast are produced, which have a limited use when decisions must be made, since they have no measure of confidence or spread of the forecast. This paper develops a Bayesian state space modelling framework for quantitative precipitation nowcasting which is probabilistic from conception. The model treats the observations (radar) as noisy realisations of the underlying true precipitation process, recognising that this process can never be completely known, and thus must be represented probabilistically. In the model presented here the dynamics of the precipitation are dominated by advection, so this is a probabilistic extrapolation forecast. The model is designed in such a way as to minimise the computational burden, while maintaining a full, joint representation of the probability density function of the precipitation process. The update and evolution equations avoid the need to sample, thus only one model needs be run as opposed to the more traditional ensemble route. It is shown that the model works well on both simulated and real data, but that further work is required before the model can be used operationally. © 2004 Elsevier B.V. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
With the proliferation of social media sites, social streams have proven to contain the most up-to-date information on current events. Therefore, it is crucial to extract events from the social streams such as tweets. However, it is not straightforward to adapt the existing event extraction systems since texts in social media are fragmented and noisy. In this paper we propose a simple and yet effective Bayesian model, called Latent Event Model (LEM), to extract structured representation of events from social media. LEM is fully unsupervised and does not require annotated data for training. We evaluate LEM on a Twitter corpus. Experimental results show that the proposed model achieves 83% in F-measure, and outperforms the state-of-the-art baseline by over 7%.© 2014 Association for Computational Linguistics.
Resumo:
Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.
Resumo:
This paper reports preliminary progress on a principled approach to modelling nonstationary phenomena using neural networks. We are concerned with both parameter and model order complexity estimation. The basic methodology assumes a Bayesian foundation. However to allow the construction of pragmatic models, successive approximations have to be made to permit computational tractibility. The lowest order corresponds to the (Extended) Kalman filter approach to parameter estimation which has already been applied to neural networks. We illustrate some of the deficiencies of the existing approaches and discuss our preliminary generalisations, by considering the application to nonstationary time series.
Resumo:
A formalism for modelling the dynamics of Genetic Algorithms (GAs) using methods from statistical mechanics, originally due to Prugel-Bennett and Shapiro, is reviewed, generalized and improved upon. This formalism can be used to predict the averaged trajectory of macroscopic statistics describing the GA's population. These macroscopics are chosen to average well between runs, so that fluctuations from mean behaviour can often be neglected. Where necessary, non-trivial terms are determined by assuming maximum entropy with constraints on known macroscopics. Problems of realistic size are described in compact form and finite population effects are included, often proving to be of fundamental importance. The macroscopics used here are cumulants of an appropriate quantity within the population and the mean correlation (Hamming distance) within the population. Including the correlation as an explicit macroscopic provides a significant improvement over the original formulation. The formalism is applied to a number of simple optimization problems in order to determine its predictive power and to gain insight into GA dynamics. Problems which are most amenable to analysis come from the class where alleles within the genotype contribute additively to the phenotype. This class can be treated with some generality, including problems with inhomogeneous contributions from each site, non-linear or noisy fitness measures, simple diploid representations and temporally varying fitness. The results can also be applied to a simple learning problem, generalization in a binary perceptron, and a limit is identified for which the optimal training batch size can be determined for this problem. The theory is compared to averaged results from a real GA in each case, showing excellent agreement if the maximum entropy principle holds. Some situations where this approximation brakes down are identified. In order to fully test the formalism, an attempt is made on the strong sc np-hard problem of storing random patterns in a binary perceptron. Here, the relationship between the genotype and phenotype (training error) is strongly non-linear. Mutation is modelled under the assumption that perceptron configurations are typical of perceptrons with a given training error. Unfortunately, this assumption does not provide a good approximation in general. It is conjectured that perceptron configurations would have to be constrained by other statistics in order to accurately model mutation for this problem. Issues arising from this study are discussed in conclusion and some possible areas of further research are outlined.
Resumo:
The aged population have an increased susceptibility to infection, therefore function of the innate immune system may be impaired as we age. Macrophages, and their precursors monocytes, play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Classically-activated 'M1' macrophages are pro-inflammatory, which can be induced by encountering pathogenic material or pro-inflammatory mediators. Alternatively activated 'M2' macrophages have a largely reparative role, including clearance of apoptotic bodies and debris from tissues. Despite some innate immune receptors being implicated in the clearance of apoptotic cells, the process has been observed to have a dominant anti-inflammatory phenotype with cytokines such as IL-10 and TGF-ß being implicated. The atherosclerotic plaque contains recruited monocytes and macrophages, and is a highly inflammatory environment despite high levels of apoptosis. At these sites, monocytes differentiate into macrophages and gorge on lipoproteins, resulting in formation of 'foam cells' which then undergo apoptosis, recruiting further monocytes. This project seeks to understand why, given high levels of apoptosis, the plaque is a pro-inflammatory environment. This phenomenon may be the result of the aged environment or an inability of foam cells to elicit an anti-inflammatory effect in response to dying cells. Here we demonstrate that lipoprotein treatment of macrophages in culture results in reduced capacity to clear apoptotic cells. The effect of lipoprotein treatment on apoptotic cell-mediated immune modulation of macrophage function is currently under study.
Resumo:
Mixture Density Networks (MDNs) are a well-established method for modelling the conditional probability density which is useful for complex multi-valued functions where regression methods (such as MLPs) fail. In this paper we extend earlier research of a regularisation method for a special case of MDNs to the general case using evidence based regularisation and we show how the Hessian of the MDN error function can be evaluated using R-propagation. The method is tested on two data sets and compared with early stopping.
Resumo:
A Bayesian procedure for the retrieval of wind vectors over the ocean using satellite borne scatterometers requires realistic prior near-surface wind field models over the oceans. We have implemented carefully chosen vector Gaussian Process models; however in some cases these models are too smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometer observations, fronts appear as discontinuities in wind direction. Due to the nature of the retrieval problem a simple discontinuity model is not feasible, and hence we have developed a constrained discontinuity vector Gaussian Process model which ensures realistic fronts. We describe the generative model and show how to compute the data likelihood given the model. We show the results of inference using the model with Markov Chain Monte Carlo methods on both synthetic and real data.
Resumo:
A practical Bayesian approach for inference in neural network models has been available for ten years, and yet it is not used frequently in medical applications. In this chapter we show how both regularisation and feature selection can bring significant benefits in diagnostic tasks through two case studies: heart arrhythmia classification based on ECG data and the prognosis of lupus. In the first of these, the number of variables was reduced by two thirds without significantly affecting performance, while in the second, only the Bayesian models had an acceptable accuracy. In both tasks, neural networks outperformed other pattern recognition approaches.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which accounts for input noise provided that a model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method adds an extra term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable, and sampling this jointly with the network’s weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input. This leads to the possibility of training an accurate model of a system using less accurate, or more uncertain, data. This is demonstrated on both the, synthetic, noisy sine wave problem and a real problem of inferring the forward model for a satellite radar backscatter system used to predict sea surface wind vectors.
Resumo:
Aims - To build a population pharmacokinetic model that describes the apparent clearance of tacrolimus and the potential demographic, clinical and genetically controlled factors that could lead to inter-patient pharmacokinetic variability within children following liver transplantation. Methods - The present study retrospectively examined tacrolimus whole blood pre-dose concentrations (n = 628) of 43 children during their first year post-liver transplantation. Population pharmacokinetic analysis was performed using the non-linear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance and influential covariates. Results - The final model identified time post-transplantation and CYP3A5*1 allele as influential covariates on tacrolimus apparent clearance according to the following equation: TVCL = 12.9 x (Weight/13.2)0.35 x EXP (-0.0058 x TPT) x EXP (0.428 x CYP3A5) where TVCL is the typical value for apparent clearance, TPT is time post-transplantation in days and the CYP3A5 is 1 where *1 allele is present and 0 otherwise. The population estimate and inter-individual variability (%CV) of tacrolimus apparent clearance were found to be 0.977 l h−1 kg−1 (95% CI 0.958, 0.996) and 40.0%, respectively, while the residual variability between the observed and predicted concentrations was 35.4%. Conclusion Tacrolimus apparent clearance was influenced by time post-transplantation and CYP3A5 genotypes. The results of this study, once confirmed by a large scale prospective study, can be used in conjunction with therapeutic drug monitoring to recommend tacrolimus dose adjustments that take into account not only body weight but also genetic and time-related changes in tacrolimus clearance.
Resumo:
Aims - To characterize the population pharmacokinetics of ranitidine in critically ill children and to determine the influence of various clinical and demographic factors on its disposition. Methods - Data were collected prospectively from 78 paediatric patients (n = 248 plasma samples) who received oral or intravenous ranitidine for prophylaxis against stress ulcers, gastrointestinal bleeding or the treatment of gastro-oesophageal reflux. Plasma samples were analysed using high-performance liquid chromatography, and the data were subjected to population pharmacokinetic analysis using nonlinear mixed-effects modelling. Results - A one-compartment model best described the plasma concentration profile, with an exponential structure for interindividual errors and a proportional structure for intra-individual error. After backward stepwise elimination, the final model showed a significant decrease in objective function value (−12.618; P < 0.001) compared with the weight-corrected base model. Final parameter estimates for the population were 32.1 l h−1 for total clearance and 285 l for volume of distribution, both allometrically modelled for a 70 kg adult. Final estimates for absorption rate constant and bioavailability were 1.31 h−1 and 27.5%, respectively. No significant relationship was found between age and weight-corrected ranitidine pharmacokinetic parameters in the final model, with the covariate for cardiac failure or surgery being shown to reduce clearance significantly by a factor of 0.46. Conclusions - Currently, ranitidine dose recommendations are based on children's weights. However, our findings suggest that a dosing scheme that takes into consideration both weight and cardiac failure/surgery would be more appropriate in order to avoid administration of higher or more frequent doses than necessary.