15 resultados para Battery chargers

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents research from part of a larger project focusing on the potential development of commercial opportunities for the reuse of batteries on the electricity grid system, subsequent to their primary use in low and ultra-low carbon vehicles, and investigating the life cycle issues surrounding the batteries. The work has three main areas; examination of electric vehicle fleet data in detail to investigate usage in first life. Batteries that have passed through a battery recycler at the end of their first life have been tested within the laboratory to confirm the general assumption that remaining capacity of 80% after use in transportation is a reasonable assumption as a basis for second-life applications. The third aspect of the paper is an investigation of the equivalent usage for three different second-life applications based on connection to the electricity grid. Additionally, the paper estimates the time to cell failure of the batteries within their second-life application to estimate lifespan for use within commercial investigations. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on battery failure rate to suggest suitable figures for use in reliability calculations. The paper then uses reliability analysis and a numerical example to investigate six different multi-modular topologies and suggests how the number of series battery strings and power electronic module redundancy should be determined for the lowest hardware cost using a numerical example. The results reveal that the cascaded dc-side modular with single inverter is the lowest cost solution for a range of battery failure rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of ex-transportation battery system (i.e. second life EV/HEV batteries) in grid applications is an emerging field of study. A hybrid battery scheme offers a more practical approach in second life battery energy storage systems because battery modules could be from different sources/ vehicle manufacturers depending on the second life supply chain and have different characteristics e.g. voltage levels, maximum capacity and also different levels of degradations. Recent research studies have suggested a dc-side modular multilevel converter topology to integrate these hybrid batteries to a grid-tie inverter. Depending on the battery module characteristics, the dc-side modular converter can adopt different modes such as boost, buck or boost-buck to suitably transfer the power from battery to the grid. These modes have different switching techniques, control range, different efficiencies, which give a system designer choice on operational mode. This paper presents an analysis and comparative study of all the modes of the converter along with their switching performances in detail to understand the relative advantages and disadvantages of each mode to help to select the suitable converter mode. Detailed study of all the converter modes and thorough experimental results based on a multi-modular converter prototype based on hybrid batteries has been presented to validate the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research develops a methodology and model formulation which suggests locations for rapid chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) usage. The model considers the likely travel patterns of BEVs and their subsequent charging demands across a large road network, where no prior candidate site information is required. Using a GIS-based methodology, polygons are constructed which represent the charging demand zones for particular routes across a real-world road network. The use of polygons allows the maximum number of charging combinations to be considered whilst limiting the input intensity needed for the model. Further polygons are added to represent deviation possibilities, meaning that placement of charge points away from the shortest path is possible, given a penalty function. A validation of the model is carried out by assessing the expected demand at current rapid charging locations and comparing to recorded empirical usage data. Results suggest that the developed model provides a good approximation to real world observations, and that for the provision of charging, location matters. The model is also implemented where no prior candidate site information is required. As such, locations are chosen based on the weighted overlay between several different routes where BEV journeys may be expected. In doing so many locations, or types of locations, could be compared against one another and then analysed in relation to siting practicalities, such as cost, land permission and infrastructure availability. Results show that efficient facility location, given numerous siting possibilities across a large road network can be achieved. Slight improvements to the standard greedy adding technique are made by adding combination weightings which aim to reward important long distance routes that require more than one charge to complete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an emerging application which uses a mixture of batteries within an energy storage system. These hybrid battery solutions may contain different battery types. A DC-side cascaded boost converters along with a module based distributed power sharing strategy has been proposed to cope with variations in battery parameters such as, state-of-charge and/or capacity. This power sharing strategy distributes the total power among the different battery modules according to these battery parameters. Each module controller consists of an outer voltage loop with an inner current loop where the desired control reference for each control loop needs to be dynamically varied according to battery parameters to undertake this sharing. As a result, the designed control bandwidth or stability margin of each module control loop may vary in a wide range which can cause a stability problem within the cascaded converter. This paper reports such a unique issue and thoroughly investigates the stability of the modular converter under the distributed sharing scheme. The paper shows that a cascaded PI control loop approach cannot guarantee the system stability throughout the operating conditions. A detailed analysis of the stability issue and the limitations of the conventional approach are highlighted. Finally in-depth experimental results are presented to prove the stability issue using a modular hybrid battery energy storage system prototype under various operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we aim to evaluate the impact of ageing and gender on different visual mental imagery processes. Two hundred and fifty-one participants (130 women and 121 men; age range = 18–77 years) were given an extensive neuropsychological battery including tasks probing the generation, maintenance, inspection, and transformation of visual mental images (Complete Visual Mental Imagery Battery, CVMIB). Our results show that all mental imagery processes with the exception of the maintenance are affected by ageing, suggesting that other deficits, such as working memory deficits, could account for this effect. However, the analysis of the transformation process, investigated in terms of mental rotation and mental folding skills, shows a steeper decline in mental rotation, suggesting that age could affect rigid transformations of objects and spare non-rigid transformations. Our study also adds to previous ones in showing gender differences favoring men across the lifespan in the transformation process, and, interestingly, it shows a steeper decline in men than in women in inspecting mental images, which could partially account for the mixed results about the effect of ageing on this specific process. We also discuss the possibility to introduce the CVMIB in clinical assessment in the context of theoretical models of mental imagery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high cost of batteries has led to investigations in using second-life ex-transportation batteries for grid support applications. Vehicle manufacturers currently all have different specifications for battery chemistry, arrangement of cells, capacity and voltage. With anticipated new developments in battery chemistry which could also affect these parameters, there are, as yet, no standards defining parameters in second life applications. To overcome issues relating to sizing and to prevent future obsolescence for the rest of the energy storage system, a cascaded topology with an operating envelope design approach has been used to connect together modules. This topology offers advantages in terms of system reliability. The design methodology is validated through a set of experimental results resulting in the creation of surface maps looking at the operation of the converter (efficiency and inductor ripple current). The use of a pre-defined module operating envelope also offers advantages for developing new operational strategies for systems with both hybrid battery energy systems and also hybrid systems including other energy sources such as solar power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) is a helpful tool to understand how a battery is behaving and how it degrades. One of the disadvantages is that it is typically an 'off-line' process. This paper investigates an alternative method of looking at impedance spectroscopy of a battery system while it is on-line and operational by manipulating the switching pattern of the dc-dc converter to generate low frequency harmonics in conjunction with the normal high frequency switching pattern to determine impedance in real time. However, this adds extra ripple on the inductor which needs to be included in the design calculations. The paper describes the methodology and presents some experimental results in conjunction with EIS results to illustrate the concept.