10 resultados para Barn Owl
em Aston University Research Archive
Resumo:
In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Resumo:
We propose a description logic extending SROIQ (the description logic underlying OWL 2 DL) and at the same time encompassing some of the most prominent monotonic and nonmonotonic rule languages, in particular Datalog extended with the answer set semantics. Our proposal could be considered a substantial contribution towards fulfilling the quest for a unifying logic for the Semantic Web. As a case in point, two non-monotonic extensions of description logics considered to be of distinct expressiveness until now are covered in our proposal. In contrast to earlier such proposals, our language has the "look and feel" of a description logic and avoids hybrid or first-order syntaxes. © 2012 The Author(s).
Resumo:
Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.
Resumo:
Autonomic systems are required to adapt continually to changing environments and user goals. This process involves the real-Time update of the system's knowledge base, which should therefore be stored in a machine-readable format and automatically checked for consistency. OWL ontologies meet both requirements, as they represent collections of knowl- edge expressed in FIrst order logic, and feature embedded reasoners. To take advantage of these OWL ontology char- acteristics, this PhD project will devise a framework com- prising a theoretical foundation, tools and methods for de- veloping knowledge-centric autonomic systems. Within this framework, the knowledge storage and maintenance roles will be fulfilled by a specialised class of OWL ontologies. ©2014 ACM.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web initiative, exhibiting an extensive commercial potential and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: Web Ontology Language for Services (OWL-S), Web Service Modelling Ontology (WSMO) and Semantic Annotations for the Web Services Description Language (SAWSDL) are the most important approaches. To the inexperienced user, choosing the appropriate platform for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely, that of the service requester and provider as well as the broker-based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalizing SWS, and to choose the most suitable solution for a given application. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web (SW) initiative, exhibiting an extensive commercial potential, and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: OWL-S (Web Ontology Language for Services), WSMO (Web Service Modeling Ontology) and SAWSDL (Semantic Annotations for the Web Services Description Language) are the most important approaches. To the inexperienced user, choosing the appropriate paradigm for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely that of the service requester and provider as well as the broker based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalising SWS, and to choose the most suitable solution for a given use case. © 2013 IEEE.
Resumo:
Software architecture plays an essential role in the high level description of a system design, where the structure and communication are emphasized. Despite its importance in the software engineering process, the lack of formal description and automated verification hinders the development of good software architecture models. In this paper, we present an approach to support the rigorous design and verification of software architecture models using the semantic web technology. We view software architecture models as ontology representations, where their structures and communication constraints are captured by the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Specific configurations on the design are represented as concrete instances of the ontology, to which their structures and dynamic behaviors must conform. Furthermore, ontology reasoning tools can be applied to perform various automated verification on the design to ensure correctness, such as consistency checking, style recognition, and behavioral inference.
Resumo:
Wireless Sensor Network (WSN) systems have become more and more popular in our modern life. They have been widely used in many areas, such as smart homes/buildings, context-aware devices, military applications, etc. Despite the increasing usage, there is a lack of formal description and automated verification for WSN system design. In this paper, we present an approach to support the rigorous verification of WSN modeling using the Semantic Web technology We use Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) to define a meta-ontology for the modeling of WSN systems. Furthermore, we apply ontology reasoners to perform automated verification on customized WSN models and their instances. We demonstrate and evaluate our approach through a Light Control System (LCS) as the case study.