9 resultados para Band pass filtering

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed the analytic expressions for the phase response and time delay of FBGSL of arbitrary grating structure and found that the results from the modelling are in excellent agreement with that of the experimentally measured real devices. The theoretical and experimental investigation clearly reveals that FBGSLs utilizing uniform and linearly chirped gratings exhibit a near-constant time delay in the passbands. Such multi-channel bandpass filters should be highly attractive to WDM applications as they are operating in transmission regime and offering near-zero dispersion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this letter is to demonstrate that complete removal of spectral aliasing occurring due to finite numerical bandwidth used in the split-step Fourier simulations of nonlinear interactions of optical waves can be achieved by enlarging each dimension of the spectral domain by a factor (n+1)/2, where n is the number of interacting waves. Alternatively, when using low-pass filtering for dealiasing this amounts to the need for filtering a 2/(n+1) fraction of each spectral dimension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis will show how to equalise the effect of quantal noise across spatial frequencies by keeping the retinal flux (If-2) constant. In addition, quantal noise is used to study the effect of grating area and spatial frequency on contrast sensitivity resulting in the extension of the new contrast detection model describing the human contrast detection system as a simple image processor. According to the model the human contrast detection system comprises low-pass filtering due to ocular optics, addition of light dependent noise at the event of quantal absorption, high-pass filtering due to the neural visual pathways, addition of internal neural noise, after which detection takes place by a local matched filter, whose sampling efficiency decreases as grating area is increased. Furthermore, this work will demonstrate how to extract both the optical and neural modulation transfer functions of the human eye. The neural transfer function is found to be proportional to spatial frequency up to the local cut-off frequency at eccentricities of 0 - 37 deg across the visual field. The optical transfer function of the human eye is proposed to be more affected by the Stiles-Crawford -effect than generally assumed in the literature. Similarly, this work questions the prevailing ideas about the factors limiting peripheral vision by showing that peripheral optical acts as a low-pass filter in normal viewing conditions, and therefore the effect of peripheral optics is worse than generally assumed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis consisted of two major parts, one determining the masking characteristics of pixel noise and the other investigating the properties of the detection filter employed by the visual system. The theoretical cut-off frequency of white pixel noise can be defined from the size of the noise pixel. The empirical cut-off frequency, i.e. the largest size of noise pixels that mimics the effect of white noise in detection, was determined by measuring contrast energy thresholds for grating stimuli in the presence of spatial noise consisting of noise pixels of various sizes and shapes. The critical i.e. minimum number of noise pixels per grating cycle needed to mimic the effect of white noise in detection was found to decrease with the bandwidth of the stimulus. The shape of the noise pixels did not have any effect on the whiteness of pixel noise as long as there was at least the minimum number of noise pixels in all spatial dimensions. Furthermore, the masking power of white pixel noise is best described when the spectral density is calculated by taking into account all the dimensions of noise pixels, i.e. width, height, and duration, even when there is random luminance only in one of these dimensions. The properties of the detection mechanism employed by the visual system were studied by measuring contrast energy thresholds for complex spatial patterns as a function of area in the presence of white pixel noise. Human detection efficiency was obtained by comparing human performance with an ideal detector. The stimuli consisted of band-pass filtered symbols, uniform and patched gratings, and point stimuli with randomised phase spectra. In agreement with the existing literature, the detection performance was found to decline with the increasing amount of detail and contour in the stimulus. A measure of image complexity was developed and successfully applied to the data. The accuracy of the detection mechanism seems to depend on the spatial structure of the stimulus and the spatial spread of contrast energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Recent morpho-functional evidence pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brainstem remains to be determined. We used a Functional Source Separation algorithm of EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura (MO) patients. Methods: Twenty MO patients and 20 healthy volunteers (HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brainstem and FS16 at thalamic level) and two cortical (FS20 radial and FS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450-750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced sub-cortical brainstem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between the two groups. Conclusions: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergic system may underline the interictal cortical abnormal information processing in migraine. Further studies are needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO. Written informed consent to publication was obtained from the patient(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Recent morpho-functional evidences pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brain stem remains to be determined.Aim: We used a Functional Source Separation algorithmof EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura(MO) patients. Method: Twenty MO patients and 20 healthy volunteers(HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brain stem andFS16 at thalamic level) and two cortical (FS20 radial andFS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450–750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced subcortical brain stem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between two groups. Conclusion: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergicsystem may underline the interictal cortical abnormal information processing in migraine. Further studiesare needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel approach to water pollution detection from remotely sensed low-platform mounted visible band camera images. We examine the feasibility of unsupervised segmentation for slick (oily spills on the water surface) region labelling. Adaptive and non adaptive filtering is combined with density modeling of the obtained textural features. A particular effort is concentrated on the textural feature extraction from raw intensity images using filter banks and adaptive feature extraction from the obtained output coefficients. Segmentation in the extracted feature space is achieved using Gaussian mixture models (GMM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose several all-pass spectrally-periodic optical structures composed of simple optical cavities for the implementation of repetition rate multipliers of periodic pulse train with uniform output train envelope by phase-only filtering, and analyze them in terms of robustness and accuracy.