3 resultados para Bacterial groups
em Aston University Research Archive
Resumo:
The major cause of death in CF is a continuous inflammation of the lungs colonised with Pseudomonas aeruginosa and occasionally also with Burkholderia cepacia. A combination of serum IgG to LPS and serum PCT levels were found to be good markers for detection of early colonisation with P. aeruginosa. Colomycin sulphomethate (colistin E) is one of the antibiotics used to treat P. aeruginosa infections in CF. Electrophoretic methods were developed to monitor the rate of conversion of colomycin sulphomethate to the active form of the drug. Antimicrobial activity towards P. aeruginosa was generated as the sulphomethate substituents were released. Clinical resistance of P. aeruginosa to colomycin is rare, but a number of isolates have been isolated. Twelve colomycin-resistant clinical isolates were investigated to determine the mechanism of resistance. It was found that the low level of resistance was due to over expression of outer membrane protein H (OprH) in 5 isolates. A novel mechanism of resistance involving modification of the phosphate groups in LPS was identified in one of the isolates. Drugs which reduce inflammation in infected CF lungs would be of great advantage for therapy. Reducing inflammation would preserve the lung function and increase the quality of life for CF patients. Antibiotics like tetracyclines, macrolides and polymyxins were tested for their potential anti-inflammatory effects using cultured human monocytic (U937) cells which secrete the pro-inflammatory cytokines IL1- and TNF- in response to LPS from P. aeruginosa and B. cepacia. It was found that tetracyclines, and especially doxycycline, are good inhibitors of cytokine release by U937 cells and therefore could reduce the inflammatory cascade.
Resumo:
Rainbow trout eggs Salmo gairdneri, Richardson, were incubated under a range of different environmental conditions. Recovery of bacteria from egg surfaces revealed that increased water temperature, slow water flow rates and high egg density all significantly increased egg surface bacterial populations. Live eggs were mainly colonized by Cytophaga sp., pseudomonas fluorescens and Aeromonas hydrophila. In contrast, dead eggs supported considerable numbers of fluorescent Pseudomonas sp. Analysis of potential nutrient sources for bacteria colonizing live egg surfaces revealed that small amounts of amino acids, phosphate and potassium may be lost by incubating eggs. Subsequently these nutrients were shown to be capable of supporting limited bacterial growth and reproduction. Dead eggs `leaked' increased amounts of the above nutrients which in turn supported higher bacterial numbers. In addition, biochemical analysis of eggs revealed amino acids and fatty acids that might be utilized by bacteria colonizing dead egg surfaces. Assessment of adhesion properties of bacteria frequently recovered from egg surfaces revealed high cell surface hydrophobicity as an important factor in successful egg colonization. Analysis of egg mortalities from groups of rainbow trout and brown trout (S.trutta L.) eggs maintained under two different incubation systems revealed that potentially a close correlation existed between egg surface bacterial numbers and mortalities in the egg during incubation. Innoculation of newly-fertilized eggs with bacteria demonstrated that groups of eggs supporting high numbers of P.fluorescens suffered significantly higher mortalities during the early part of their incubation. Exposure of incubating eggs to oxolinic acid, chlortetracycline and chloramphenicol demonstrated that numbers of bacteria on egg surfaces could be significantly reduced. However, as no corresponding increase in egg hatching success was revealed, the treatment of incubating eggs with antibiotics or antimicrobial compounds can not be recommended. In commercial hatcheries bacteria are only likely to be responsible for egg deaths during incubation when environmental conditions are unfavourable. High water temperatures, slow water flow rates and high egg density all lead to increased bacterial number of egg surfaces, reduced water circulation and low levels of dissolved oxygen. Under such circumstances sufficient amounts of dissolved oxygen may not be available to support developing embryos.
Resumo:
The analysis of bacterial genomes for epidemiological purposes often results in the production of a banding profile of DNA fragments characteristic of the genome under investigation. These may be produced using various methods, many of which involve the cutting or amplification of DNA into defined and reproducible characteristic fragments. It is frequently of interest to enquire whether the bacterial isolates are naturally classifiable into distinct groups based on their DNA profiles. A major problem with this approach is whether classification or clustering of the data is even appropriate. It is always possible to classify such data but it does not follow that the strains they represent are ‘actually’ classifiable into well-defined separate parts. Hence, the act of classification does not in itself answer the question: do the strains consist of a number of different distinct groups or species or do they merge imperceptibly into one another because DNA profiles vary continuously? Nevertheless, we may still wish to classify the data for ‘convenience’ even though strains may vary continuously, and such a classification has been called a ‘dissection’. This Statnote discusses the use of classificatory methods in analyzing the DNA profiles from a sample of bacterial isolates.