2 resultados para Bacterial Adhesion
em Aston University Research Archive
Resumo:
Rainbow trout eggs Salmo gairdneri, Richardson, were incubated under a range of different environmental conditions. Recovery of bacteria from egg surfaces revealed that increased water temperature, slow water flow rates and high egg density all significantly increased egg surface bacterial populations. Live eggs were mainly colonized by Cytophaga sp., pseudomonas fluorescens and Aeromonas hydrophila. In contrast, dead eggs supported considerable numbers of fluorescent Pseudomonas sp. Analysis of potential nutrient sources for bacteria colonizing live egg surfaces revealed that small amounts of amino acids, phosphate and potassium may be lost by incubating eggs. Subsequently these nutrients were shown to be capable of supporting limited bacterial growth and reproduction. Dead eggs `leaked' increased amounts of the above nutrients which in turn supported higher bacterial numbers. In addition, biochemical analysis of eggs revealed amino acids and fatty acids that might be utilized by bacteria colonizing dead egg surfaces. Assessment of adhesion properties of bacteria frequently recovered from egg surfaces revealed high cell surface hydrophobicity as an important factor in successful egg colonization. Analysis of egg mortalities from groups of rainbow trout and brown trout (S.trutta L.) eggs maintained under two different incubation systems revealed that potentially a close correlation existed between egg surface bacterial numbers and mortalities in the egg during incubation. Innoculation of newly-fertilized eggs with bacteria demonstrated that groups of eggs supporting high numbers of P.fluorescens suffered significantly higher mortalities during the early part of their incubation. Exposure of incubating eggs to oxolinic acid, chlortetracycline and chloramphenicol demonstrated that numbers of bacteria on egg surfaces could be significantly reduced. However, as no corresponding increase in egg hatching success was revealed, the treatment of incubating eggs with antibiotics or antimicrobial compounds can not be recommended. In commercial hatcheries bacteria are only likely to be responsible for egg deaths during incubation when environmental conditions are unfavourable. High water temperatures, slow water flow rates and high egg density all lead to increased bacterial number of egg surfaces, reduced water circulation and low levels of dissolved oxygen. Under such circumstances sufficient amounts of dissolved oxygen may not be available to support developing embryos.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.