32 resultados para Backward Cauchy problem

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green’s functions, and properties of these equations are shown in an L2-setting. An effective way of discretizing these boundary integral equations based on the Nystr¨om method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of ` 12 ` 12 `$12 `&12 `#12 `^12 `_12 `%12 `~12 *Kozlov91 applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is an initial study of a numerical method for identifying multiple leak zones in saturated unsteady flow. Using the conventional saturated groundwater flow equation, the leak identification problem is modelled as a Cauchy problem for the heat equation and the aim is to find the regions on the boundary of the solution domain where the solution vanishes, since leak zones correspond to null pressure values. This problem is ill-posed and to reconstruct the solution in a stable way, we therefore modify and employ an iterative regularizing method proposed in [1] and [2]. In this method, mixed well-posed problems obtained by changing the boundary conditions are solved for the heat operator as well as for its adjoint, to get a sequence of approximations to the original Cauchy problem. The mixed problems are solved using a Finite element method (FEM), and the numerical results indicate that the leak zones can be identified with the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.