2 resultados para BROMOCRIPTINE
em Aston University Research Archive
Resumo:
Bromocriptine is an ergot alkaloid dopamine D receptor agonist that has been used extensively in the past to treat hyperprolactinaemia, galactorrhoea and Parkinsonism. It is known that hypothalamic hypodopaminergic states and disturbed circadian rhythm are associated with the development of insulin resistance, obesity and diabetes in animals and humans. When administered in the early morning at the start of the light phase, a new quick release (QR) formulation of bromocriptine appears to act centrally to reset circadian rhythms of hypothalamic dopamine and serotonin and improve insulin resistance and other metabolic abnormalities. Phase II and III clinical studies show that QR-bromocriptine lowers glycated haemoglobin by 0.6-1.2% (7-13 mmol/mol) either as monotherapy or in combination with other antidiabetes medications. Apart from nausea, the drug is well tolerated. The doses used to treat diabetes (up to 4.8 mg daily) are much lower than those used to treat Parkinson's disease and have not been associated with retroperitoneal fibrosis or heart valve abnormalities. QR-bromocriptine (Cycloset™) has recently been approved in the USA for the treatment of type 2 diabetes mellitus (T2DM). Thus, a QR formulation of bromocriptine timed for peak delivery in the early morning may provide a novel neurally mediated approach to the control of hyperglycaemia in T2DM. © 2010 Blackwell Publishing Ltd.
Resumo:
Previous studies in man have shown that following dosing with L--3,4-dihydroxyphenylalanine (L-DOPA) and cotrimoxazole, plasma biopterins were raised. By analogy with dihydropteridine reductase deficient children in whom plasma biopterins are greatly elevated and the observations that these preparations were dihydropteridine reductase inhibitors, it was assumed that these raised plasma levels were due to increased efflux from tissues which resulted in tissue depletion of biopterins. In some human disease states such as senile dementia of the Alzheimer type lowered plasma biopterins were observed; by analogy with tetrahydrobiopterin synthesis deficient children these reduced plasma biopterins were attributed to lowered tetrahydrobiopterin synthesis and concomitant low tissue biopterin levels. Because of ethical considerations it was not possible to measure directly the tissue biopterins changes in either case. The Wistar rat was used as a model for human tetrahydrobiopterin metabolism, since tissues not normally accessible for study in humans, such as the brain and liver, could be examined for their effects on tetrahydrobiopterin metabolism after administration of the various agents. Plasma total biopterins in normal conditions were found to be much higher than in healthy humans. The elevation of plasma total biopterins concentration following the administration of dihydropteridine reductase inhibitors to humans, such as L-DOPA and cotrimoxazole was not observed in the rat. However, the administration of inhibitors of de novo tetrahydrobiopterin biosynthesis, such as diaminohydroxypyrimidine (DAHP) and bromocriptine was shown to decrease plasma biopterins concentration. In general, hepatic biopterins were decreased after administration of both dihydropteridine reductase inhibitors and de novo biosynthesis inhibitors. Drugs which are direct (bromocriptine) or indirect (L-DOPA and Sinemet Plus) agonists at dopamine receptors were investigated and were shown to decrease hepatic total biopterins concentration, but had no effect on brain biopterins. Bromocriptine was demonstrated as a potent inhibitor of de novo tetrahydrobiopterin biosynthesis in vivo and in vitro. Cotrimoxazole decreased brain tetrahydrobiopterin concentration. DAHP was effective in causing hyperphenylalaninaemia due to tetrahydrobiopterin deficiency in the rat. p-hydroxyphenylacetate was shown to be an effective inhibitor of dihydropteridine reductase in vivo. Phenylacetate administration had no observable effect on tetrahydrobiopterin metabolism, but did cause tyrosinaemia. It is proposed that scopolamine reduces tetrahydrobiopterin turnover. Lead and aluminium exposure caused deranged tetrahydrobiopterin metabolism. Aluminium, but not lead decreased brain choline acetyltransferase activity. Phenylalanine loading in normal human subjects was followed by an elevation in plasma biopterins which was not observed after tyrosine loading. Plasma N : B ratios correlated well with VEP latencies after tyrosine loading, but not after phenylalanine loading in healthy subjects. The use of derived pterin measurements as an indicator of tetrahydrobiopterin turnover or tetrahydrofolate status is discussed in the text.