30 resultados para BRAIN-STEM NEURONS
em Aston University Research Archive
Resumo:
BACKGROUND: Brain stem death can elicit a potentially manipulable cardiotoxic proinflammatory cytokine response. We investigated the prevalence of this response, the impact of donor management with tri-iodothyronine (T3) and methylprednisolone (MP) administration, and the relationship of biomarkers to organ function and transplant suitability. METHODS: In a prospective randomized double-blinded factorially designed study of T3 and MP therapy, we measured serum levels of interleukin-1 and -6 (IL-1 and IL-6), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein, and procalcitonin (PCT) levels in 79 potential heart or lung donors. Measurements were performed before and after 4 hr of algorithm-based donor management to optimize cardiorespiratory function and +/-hormone treatment. Donors were assigned to receive T3, MP, both drugs, or placebo. RESULTS: Initial IL-1 was elevated in 16% donors, IL-6 in 100%, TNF-alpha in 28%, CRP in 98%, and PCT in 87%. Overall biomarker concentrations did not change between initial and later measurements and neither T3 nor MP effected any change. Both PCT (P =0.02) and TNF-alpha (P =0.044) levels were higher in donor hearts with marginal hemodynamics at initial assessment. Higher PCT levels were related to worse cardiac index and right and left ventricular ejection fractions and a PCT level more than 2 ng x mL(-1) may attenuate any improvement in cardiac index gained by donor management. No differences were observed between initially marginal and nonmarginal donor lungs. A PCT level less than or equal to 2 ng x mL(-1) but not other biomarkers predicted transplant suitability following management. CONCLUSIONS: There is high prevalence of a proinflammatory environment in the organ donor that is not affected by tri-iodothyronine or MP therapy. High PCT and TNF-alpha levels are associated with donor heart dysfunction. (C) 2009 Lippincott Williams & Wilkins, Inc.
Resumo:
The last decade has seen a considerable increase in the application of quantitative methods in the study of histological sections of brain tissue and especially in the study of neurodegenerative disease. These disorders are characterised by the deposition and aggregation of abnormal or misfolded proteins in the form of extracellular protein deposits such as senile plaques (SP) and intracellular inclusions such as neurofibrillary tangles (NFT). Quantification of brain lesions and studying the relationships between lesions and normal anatomical features of the brain, including neurons, glial cells, and blood vessels, has become an important method of elucidating disease pathogenesis. This review describes methods for quantifying the abundance of a histological feature such as density, frequency, and 'load' and the sampling methods by which quantitative measures can be obtained including plot/quadrat sampling, transect sampling, and the point-quarter method. In addition, methods for determining the spatial pattern of a histological feature, i.e., whether the feature is distributed at random, regularly, or is aggregated into clusters, are described. These methods include the use of the Poisson and binomial distributions, pattern analysis by regression, Fourier analysis, and methods based on mapped point patterns. Finally, the statistical methods available for studying the degree of spatial correlation between pathological lesions and neurons, glial cells, and blood vessels are described.
Resumo:
We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.
Resumo:
Differential clinical diagnosis of the parkinsonian syndromes,viz., Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD) can be difficult. Visual hallucinations, however, are a chronic complication of some parkinsonian disorders and their presence may be a useful aid to diagnosis. The visual hallucinations in parkinsonism are often recurrent, well-formed, and detailed and occur in a significant proportion of cases of DLB and PD but are less common in PSP, MSA, and CBD. Hallucinations in PD often occur later in the disease and are complex, with flickering lights, and illusionary misconceptions often preceding the most common manifestation, viz., stereotypical colourful images. Hallucinations in DLB, however, are often present earlier in the disease and are similar to those in the 'misidentification syndromes', 'visual agnosias', and in 'delerium' but differ from those produced by hallucinogenic drugs such as LSD. Most typically in DLB, the hallucinations involve people or animals invading the patient's home but may also include inanimate objects and the appearance of writing on walls or ceilings. Visual hallucinations may involve a number of brain mechanisms including a change in the balance of neurotransmitter activity between the cholinergic and monoaminergic systems and may be a specific consequence of Lewy body (LB) pathology in brain stem nuclei. Ocular and retinal pathology may also contribute to hallucinations by reducing occipital stimulation. Hence, in patients with unclassifiable or with indeterminate parkinsonian symptoms, the presence of visual hallucinations should be regarded as a 'red flag' symptom indicating underlying Lewy body pathology and therefore, supporting a diagnosis of PD or DLB rather than PSP, MSA, or CBD. The presence of early visual hallucinations would support a diagnosis of DLB rather than PD. © 2013 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Background: Recent morpho-functional evidences pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brain stem remains to be determined.Aim: We used a Functional Source Separation algorithmof EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura(MO) patients. Method: Twenty MO patients and 20 healthy volunteers(HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brain stem andFS16 at thalamic level) and two cortical (FS20 radial andFS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450–750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced subcortical brain stem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between two groups. Conclusion: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergicsystem may underline the interictal cortical abnormal information processing in migraine. Further studiesare needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO.
Resumo:
STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.
Resumo:
Abnormally enlarged neurons (AEN) occur in many neurodegenerative diseases. To define AEN more objectively, the frequency distribution of the ratio of greatest cell diameter(CD) to greatest nuclear diameter (ND) was studied in populations of cortical neurons in tissue sections of seven cognitively normal brains. The frequency distribution of CD/ND deviated from a normal distribution in 15 out of 18 populations of neurons studied and hence, the 95th percentile (95P) was used to define a limit of the CD/ND ratio excluding the5% most extreme observations. The 95P of the CD/ ND ratio varied from 2.0 to 3.0 in different cases and regions and a value of 95P = 3.0 was chosen to define the limit for normalneurons under non-pathological conditions. Based on the 95P = 3.0 criterion, the proportion of AEN with a CD/ND ≥ 3 varied from 2.6% in Alzheimer's disease (AD) to 20.3% in Pick's disease (PiD). The data suggest: (1) that a CL/ND ≥ 3.0 may be a useful morphological criterion for defining AEN, and (2) AEN were most numerous in PiD and corticobasal degeneration (CBD) and least abundant in AD and in dementia with Lewy bodies (DLB). © 2013 Dustri-Verlag Dr. K. Feistle.
Resumo:
Alzheimer’s Disease (AD) is the most common form of dementia currently affecting more than 35 million people worldwide. Hypometabolism is a major feature of AD and appears decades before cognitive decline and pathological lesions. This has a detrimental impact on the brain which has a high energy demand. Current models of AD fail to mimic all the features of the disease, which has an impact on the development of new therapies. Human stem cell derived models of the brain have attracted a lot of attention in recent years as a tool to study neurodegenerative diseases. In this thesis, neurons and astrocytes derived from the human embryonal carcinoma cell line (NT2/D1) were utilised to determine the metabolic coupling between neurons and astrocytes with regards to responses to hypoglycaemia, neuromodulators and increase in neuronal activity. This model was then used to investigate the effects of Aß(1-42) on the metabolism of these NT2-derived co-cultures as well as pure astrocytes. Additionally primary cortical mixed neuronal and glial cultures were utilised to compare this model to a widely accepted in vitro model used in Alzheimer’s disease research. Co-cultures were found to respond to Aß(1-42) in similar way to human and in vivo models. Hypometabolism was characterised by changes in glucose metabolism, as well as lactate, pyruvate and glycogen. This led to a significant decrease in ATP and the ratio of NAD+/NADH. These results together with an increase in calcium oscillations and a decrease in GSH/GSSG ratio, suggests Aß-induces metabolic and oxidative stress. This situation could have detrimental effects in the brain which has a high energy demand, especially in terms of memory formation and antioxidant capacity.
Resumo:
There is currently great scientific and medical interest in the potential of tissue grown from stem cells. These cells present opportunities for generating model systems for drug screening and toxicological testing which would be expected to be more relevant to human outcomes than animal based tissue preparations. Newly realised astrocytic roles in the brain have fundamental implications within the context of stem cell derived neuronal networks. If the aim of stem cell neuroscience is to generate functional neuronal networks that behave as networks do in the brain, then it becomes clear that we must include and understand all the cellular components that comprise that network, and which are important to support synaptic integrity and cell to cell signalling. We have shown that stem cell derived neurons exhibit spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling (1). Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, astrocytes exhibit morphology and functional properties consistent with this glial cell type. Astrocytes also respond to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. Astroctyes also generate propagating calcium waves that are gap junction and purinergic signalling dependent. Our results show that stem cell derived astrocytes exhibit appropriate functionality and that stem cell neuronal networks interact with astrocytic networks in co-culture. Using mixed cultures of stem cell derived neurons and astrocytes, we have also shown both cell types also modulate their glucose uptake, glycogen turnover and lactate production in response to glutamate as well as increased neuronal activity (2). This finding is consistent with their neuron-astrocyte metabolic coupling thus demonstrating a tractable human model, which will facilitate the study of the metabolic coupling between neurons and astrocytes and its relationship with CNS functional issues ranging from plasticity to neurodegeneration. Indeed, cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose (3). Both co-cultures of neurons and astrocytes and purified cultures of astrocytes showed a significant decrease in glucose uptake after treatment with 2 and 0.2 μmol/L Aβ at all time points investigated (p <0.01). In addition, a significant increase in the glycogen content of cells was also measured. Mixed neuron and astrocyte co-cultures as well as pure astrocyte cultures showed an initial decrease in glycogen levels at 6 hours compared with control at 0.2 μmol/L and 2 μmol/L P <0.01. These changes were accompanied by changes in NAD+/NADH (P<0.05), ATP (P<0.05), and glutathione levels (P<0.05), suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. As numerous cell types interact in the brain it is important that any in vitro model developed reflects this arrangement. Our findings indicate that stem cell derived neuron and astrocyte networks can communicate, and so have the potential to interact in a tripartite manner as is seen in vivo. This study therefore lays the foundation for further development of stem cell derived neurons and astrocytes into therapeutic cell replacement and human toxicology/disease models. More recently our data provides evidence for a detrimental effect of Aβ on carbohydrate metabolism in both neurons and astrocytes. As a purely in vitro system, human stem cell models can be readily manipulated and maintained in culture for a period of months without the use of animals. In our laboratory cultures can be maintained in culture for up to 12 months months thus providing the opportunity to study the consequences of these changes over extended periods of time relevant to aspects of the disease progression time frame in vivo. In addition, their human origin provides a more realistic in vitro model as well as informing other human in vitro models such as patient-derived iPSC.
Resumo:
This article reviews methods for quantifying the abundance of histological features in thin tissue sections of brain such as neurons, glia, blood vessels, and pathological lesions. The sampling methods by which quantitative measures can be obtained are described. In addition, methods are described for determining the spatial pattern of an object and for measuring the degree of spatial correlation between two or more histological features.
Resumo:
The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention.
Resumo:
Corticobasal degeneration (CBD) is a rare and progressive neurological disorder characterised by the presence of ballooned neurons (BN) and tau positive inclusions in neurons and glial cells. We studied the spatial patterns of the BN, tau positive neurons with inclusions (tau + neurons), and tau positive plaques in the neocortex and hippocampus in 12 cases of CBD. All lesions were aggregated into clusters and in many brain areas, the clusters were distributed in a regular pattern parallel to the tissue boundary. In the majority of cortical areas, the clusters of BN were larger in the lower compared with the upper laminae while the clusters of tau + neurons were larger in the upper laminae. Clusters of BN and tau + neurons were either negatively correlated or not significantly correlated in the upper and lower cortical laminae. Hence, BN and tau + lesions in CBD exhibit similar spatial patterns as lesions in Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Pick's disease (PD). The location, sizes and distribution of the clusters in the neocortex suggest that the tau + lesions may be associated with the degeneration of the feedforward and the BN the feedback cortico-cortical and/or the efferent cortical pathways. © 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The histological features of cases of variant Creutzfeldt-Jakob disease (vCJD) are often distributed in the brain in clusters. This study investigated the spatial associations between the clusters of the vacuoles, surviving neurons, and prion protein (PrP) deposits in various brain areas in 11 cases of vCJD. Clusters of vacuoles and surviving neurons were positively correlated in the cerebral cortex but negatively correlated in the dentate gyrus. Clusters of the florid and diffuse type of PrP deposit were not positively correlated with those of either the vacuoles or the surviving neurons although a negative correlation was observed between the florid plaques and surviving neurons in some cortical areas. Clusters of the florid and diffuse deposits were either negatively correlated or uncorrelated. These data suggest: 1) that clusters of vacuoles in the cerebral cortex are associated with the presence of surviving neuronal cell bodies, 2) that the clusters of vacuoles are not spatially related to those of the PrP deposits, and 3) different factors are involved in the pathogenesis of the florid and diffuse PrP deposits.
Resumo:
Neuronal intermediate filament (IF) inclusion disease (NIFID) is characterized by neuronal loss, neuronal cytoplasmic IF-positive inclusions (NI), swollen neurons (SN), and a glial cell reaction. We studied the spatial correlations between the clusters of NI, SN, and glial cells in four gyri of the temporal lobe (superior temporal gyrus, inferior temporal gyrus, lateral occipitotemporal gyrus, and parahippocampal gyrus) in four cases of NIFID. The densities of histological features (per 50x250 μ sample field) were as follows: NI (mean = 0.41, range 0.28-0.68), SN (mean = 1.41, range 0.47-2.65), glial cell nuclei (mean = 5.21, range 3.63-8.17). The NI and the SN were positively correlated in half of the brain regions examined, the correlations being present at the smallest field size (50x250 μm). The NI were also positively or negatively correlated with the glial cell nuclei in different areas, the negative correlations being present at the smallest field size. Glial cell nuclei were positively or negatively correlated with the SN in different brain areas, mainly at the larger field sizes (400x250 and 800x250 μm). The spatial correlation between the clusters of NI and SN in the cortex suggests their development within the same columns of cells. At first, the glial cell reaction is also confined to these columns but later becomes more generally distributed across the cortex. © Springer-Verlag 2004.