32 resultados para BRAIN-STEM MECHANISMS
em Aston University Research Archive
Resumo:
Differential clinical diagnosis of the parkinsonian syndromes,viz., Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD) can be difficult. Visual hallucinations, however, are a chronic complication of some parkinsonian disorders and their presence may be a useful aid to diagnosis. The visual hallucinations in parkinsonism are often recurrent, well-formed, and detailed and occur in a significant proportion of cases of DLB and PD but are less common in PSP, MSA, and CBD. Hallucinations in PD often occur later in the disease and are complex, with flickering lights, and illusionary misconceptions often preceding the most common manifestation, viz., stereotypical colourful images. Hallucinations in DLB, however, are often present earlier in the disease and are similar to those in the 'misidentification syndromes', 'visual agnosias', and in 'delerium' but differ from those produced by hallucinogenic drugs such as LSD. Most typically in DLB, the hallucinations involve people or animals invading the patient's home but may also include inanimate objects and the appearance of writing on walls or ceilings. Visual hallucinations may involve a number of brain mechanisms including a change in the balance of neurotransmitter activity between the cholinergic and monoaminergic systems and may be a specific consequence of Lewy body (LB) pathology in brain stem nuclei. Ocular and retinal pathology may also contribute to hallucinations by reducing occipital stimulation. Hence, in patients with unclassifiable or with indeterminate parkinsonian symptoms, the presence of visual hallucinations should be regarded as a 'red flag' symptom indicating underlying Lewy body pathology and therefore, supporting a diagnosis of PD or DLB rather than PSP, MSA, or CBD. The presence of early visual hallucinations would support a diagnosis of DLB rather than PD. © 2013 Nova Science Publishers, Inc. All rights reserved.
Resumo:
BACKGROUND: Brain stem death can elicit a potentially manipulable cardiotoxic proinflammatory cytokine response. We investigated the prevalence of this response, the impact of donor management with tri-iodothyronine (T3) and methylprednisolone (MP) administration, and the relationship of biomarkers to organ function and transplant suitability. METHODS: In a prospective randomized double-blinded factorially designed study of T3 and MP therapy, we measured serum levels of interleukin-1 and -6 (IL-1 and IL-6), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein, and procalcitonin (PCT) levels in 79 potential heart or lung donors. Measurements were performed before and after 4 hr of algorithm-based donor management to optimize cardiorespiratory function and +/-hormone treatment. Donors were assigned to receive T3, MP, both drugs, or placebo. RESULTS: Initial IL-1 was elevated in 16% donors, IL-6 in 100%, TNF-alpha in 28%, CRP in 98%, and PCT in 87%. Overall biomarker concentrations did not change between initial and later measurements and neither T3 nor MP effected any change. Both PCT (P =0.02) and TNF-alpha (P =0.044) levels were higher in donor hearts with marginal hemodynamics at initial assessment. Higher PCT levels were related to worse cardiac index and right and left ventricular ejection fractions and a PCT level more than 2 ng x mL(-1) may attenuate any improvement in cardiac index gained by donor management. No differences were observed between initially marginal and nonmarginal donor lungs. A PCT level less than or equal to 2 ng x mL(-1) but not other biomarkers predicted transplant suitability following management. CONCLUSIONS: There is high prevalence of a proinflammatory environment in the organ donor that is not affected by tri-iodothyronine or MP therapy. High PCT and TNF-alpha levels are associated with donor heart dysfunction. (C) 2009 Lippincott Williams & Wilkins, Inc.
Resumo:
We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.
Resumo:
Background: Recent morpho-functional evidences pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brain stem remains to be determined.Aim: We used a Functional Source Separation algorithmof EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura(MO) patients. Method: Twenty MO patients and 20 healthy volunteers(HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brain stem andFS16 at thalamic level) and two cortical (FS20 radial andFS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450–750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced subcortical brain stem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between two groups. Conclusion: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergicsystem may underline the interictal cortical abnormal information processing in migraine. Further studiesare needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO.
Resumo:
The concept of the haematopoietic stem cell (HSC) niche was formulated by Schofield in the 1970s, as a region within the bone marrow containing functional cell types that can maintain HSC potency throughout life. Since then, ongoing research has identified numerous cell types and a plethora of signals that not only maintain HSCs, but also dictate their behaviour with respect to homeostatic requirements and exogenous stresses. It has been proposed that there are endosteal and vascular niches within the bone marrow, which are thought to regulate different HSC populations. However, recent data depicts a more complicated picture, with functional crosstalk between cells in these two regions. In this review, recent research into the endosteal/vascular cell types and signals regulating HSC behaviour are considered, together with the possibility of a single subcompartmentalised niche.
Resumo:
In spite of the inherent difficulties in achieving a biologically meaningful definition of consciousness, recent neurophysiological studies are starting to provide some insight in fundamental mechanisms associated with impaired consciousness in neurological disorders. Generalised seizures are associated with disruption of the default state network, a functional network of discrete brain areas, which include the fronto-parietal cortices. Subcortical contribution through activation of thalamocortical structures, as well as striate nuclei are also crucial to produce impaired consciousness in generalised seizures.
Resumo:
Alzheimer's disease (AD) is the most common form of dementia, affecting more than 35 million people worldwide. Brain hypometabolism is a major feature of AD, appearing decades before cognitive decline and pathologic lesions. To date, the majority of studies on hypometabolism in AD have used transgenic animal models or imaging studies of the human brain. As it is almost impossible to validate these findings using human tissue, alternative models are required. In this study, we show that human stem cell-derived neuron and astrocyte cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose, pyruvate, lactate, and glutamate. In addition, a significant increase in the glycogen content of cells was also observed. These changes were accompanied by changes in NAD+ /NADH, ATP, and glutathione levels, suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. Further research using this model may elucidate the mechanisms associated with Aβ-induced hypometabolism.
Resumo:
Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date, have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem-cell based approaches in fulfilling the need for human- based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell derived astrocytes have demonstrated functional activities that are equivalent to that observed in vivo.
Resumo:
Abstract Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9-T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×10(6) PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-a and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.
Resumo:
Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversial topic of HSC and MSC transdifferentiation into central nervous system cells but focus on the neurotrophic, tissue sparing, and reparative action of MSC grafts in the context of the spinal cord injury (SCI) milieu. We then discuss some of the specific issues related to the translation of HSC and MSC therapies for patients with SCI and present a comprehensive critique of the current bone marrow cell clinical trials for the treatment of SCI to date.
Resumo:
Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Deep brain stimulation has shown remarkable potential in alleviating otherwise treatment-resistant chronic pain, but little is currently known about the underlying neural mechanisms. Here for the first time, we used noninvasive neuroimaging by magnetoencephalography to map changes in neural activity induced by deep brain stimulation in a patient with severe phantom limb pain. When the stimulator was turned off, the patient reported significant increases in subjective pain. Corresponding significant changes in neural activity were found in a network including the mid-anterior orbitofrontal and subgenual cingulate cortices; these areas are known to be involved in pain relief. Hence, they could potentially serve as future surgical targets to relieve chronic pain. © 2007 Lippincott Williams & Wilkins, Inc.
Resumo:
Chronic exposure to aluminium (Al) remains a controversial possible cause of sporadic forms of Alzheimer's disease (AD). This article reviews the evidence that once Al enters the brain and individual brain cells, it may be involved in three pathological processes: (1) the production of abnormal forms of tau leading to the formation of cellular neurofibrillary tangles and neuropil threads; (2) the processing of the amyloid precursor protein, resulting in the formation of beta-amyloid deposits and senile plaques, and (3) that via the mutual histocompatibility system, Al could be involved in the initiation of the immune response observed in AD patients. Despite recent evidence that Al could be involved in these processes, a conclusive case that exposure to Al initiates the primary pathological process in sporadic AD remains to be established.
Resumo:
Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.