14 resultados para BPB-chemical modification

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Heterocyclic cations are incorporated into proteins using 5-(2-bromoethyl)phenanthridinium bromide, which selectively reacts with either cysteine or lysine residues, resulting in ethylphenanthridinium (Phen) or highly stable cyclised dihydro-imidazo-phenanthridinium (DIP) adducts respectively; these modifications have been found to manipulate the observed structure of lysozyme and bovine serum albumin by AFM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this research was to examine the concepts of the chemical modification of polymer blends by reactive processing using interlinking agents (multi-functional, activated vinyl compounds; trimethylolpropane triacrylates {TRIS} and divinylbenzene {DVD}) to target in-situ interpolymer formation between immiscible polymers in PS/EPDM blends via peroxide-initiated free radical reactions during melt mixing. From a comprehensive survey of previous studies of compatibility enhancement in polystyrene blends, it was recognised that reactive processing offers opportunities for technological success that have not yet been fully realised; learning from this study is expected to assist in the development and application of this potential. In an experimental-scale operation for the simultaneous melt blending and reactive processing of both polymers, involving manual injection of precise reactive agent/free radical initiator mixtures directly into molten polymer within an internal mixer, torque changes were distinct, quantifiable and rationalised by ongoing physical and chemical effects. EPDM content of PS/EPDM blends was the prime determinant of torque increases on addition of TRIS, itself liable to self-polymerisation at high additions, with little indication of PS reaction in initial reactively processed blends with TRIS, though blend compatibility, from visual assessment of morphology by SEM, was nevertheless improved. Suitable operating windows were defined for the optimisation of reactive blending, for use once routes to encourage PS reaction could be identified. The effectiveness of PS modification by reactive processing with interlinking agents was increased by the selection of process conditions to target specific reaction routes, assessed by spectroscopy (FT-IR and NMR) and thermal analysis (DSC) coupled dichloromethane extraction and fractionation of PS. Initiator concentration was crucial in balancing desired PS modification and interlinking agent self-polymerisation, most particularly with TRIS. Pre-addition of initiator to PS was beneficial in the enhancement of TRIS binding to PS and minimisation of modifier polymerisation; believed to arise from direct formation of polystyryl radicals for addition to active unsaturation in TRIS. DVB was found to be a "compatible" modifier for PS, but its efficacy was not quantified. Application of routes for PS reaction in PS/EPDM blends was successful for in-situ formation of interpolymer (shown by sequential solvent extraction combined with FT-IR and DSC analysis); the predominant outcome depending on the degree of reaction of each component, with optimum "between-phase" interpolymer formed under conditions selected for equalisation of differing component reactivities and avoidance of competitive processes. This was achieved for combined addition of TRIS+DVB at optimum initiator concentrations with initiator pre-addition to PS. Improvements in blend compatibility (by tensiles, SEM and thermal analysis) were shown in all cases with significant interpolymer formation, though physical benefits were not; morphology and other reactive effects were also important factors. Interpolymer from specific "between-phase" reaction of blend components and interlinking agent was vital for the realisation of positive performance on compatibilisation by the chemical modification of polymer blends by reactive processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the knowledge of PVC degradation and stabilisation, chemical modifications were imposed on degraded PVC and raw PVC with the aim of obtaining non-migrating additives. The modifications were carried out mainly in the presence of dibutyl maleate (DBM), and the resulting polymer contained dibutyl maleic residues. Such modifications result in a polymer which contain substantive additives which resist migration under aggressive environments. Previous studies have shown that stable nitroxyl radicals function as stabilisers in polymer during processing (e.g. PP, PVC) by deactivating a large number of kinetic chains via a redox process whereby the concentrations of the nitroxyl and its reduced form, the hydroxylamine, fluctuate reciprocally and rhythmically. In order to understand the major reactions involved in such systems, a simulation method was used which resulted in a mathematical model and some rate constants, explaining the kinetic behaviour exhibited by such system. In the process of forming a suitable model, two nonlinear oscillators were proposed, which could be of interest in the study of nonlinear phenomenon because of their chaotic behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, speciality use organoclays are being developed for an increasingly large number of specific applications. Many of these, including use in cosmetics, polishes, greases and paints, require that the material be free from abrasive impurities so that the product retains a smooth `feel'. The traditional `wet' method preparation of organoclays inherently removes abrasives naturally present in the parent mineral clay, but it is time-consuming and expensive. The primary objective of this thesis was to explore the alternative `dry' method (which is both quicker and cheaper but which provides no refining of the parent clay) as a process, and to examine the nature of the organoclays produced, for the production of a wide range of commercially usable organophilic clays in a facile way. Natural Wyoming bentonite contains two quite different types of silicate surface (that of the clay mineral montmorillonite and that of a quartz impurity) that may interact with the cationic surfactant added in the `dry' process production of organoclays. However, it is oil shale, and not the quartz, that is chiefly responsible for the abrasive nature of the material, although air refinement in combination with the controlled milling of the bentonite as a pretreatment may offer a route to its removal. Ion exchange of Wyoming bentonite with a long chain quaternary ammonium salt using the `dry' process affords a partially exchanged, 69-78%, organoclay, with a monolayer formation of ammonium ions in the interlayer. Excess ion pairs are sorbed on the silicate surfaces of both the clay mineral and the quartz impurity phases. Such surface sorption is enhanced by the presence of very finely divided, super paramagnetic, Fe2O3 or Fe(O)(OH) contaminating the surfaces of the major mineral components. The sorbed material is labile to washing, and induces a measurable shielding of the 29Si nuclei in both clay and quartz phases in the MAS NMR experiment, due to an anisotropic magnetic susceptibility effect. XRD data for humidified samples reveal the interlamellar regions to be strongly hydrophobic, with the by-product sodium chloride being expelled to the external surfaces. Many organic cations will exchange onto a clay. The tetracationic cyclophane, and multipurpose receptor, cyclobis(paraquat-p-phenylene) undergoes ion exchange onto Wyoming bentonite to form a pillared clay with a very regular gallery height. The major plane of the cyclophane is normal to the silicate surfaces, thus allowing the cavity to remain available for complexation. A series of group VI substituted o-dimethoxybenzenes were introduced, and shown to participate in host/guest interactions with the cyclophane. Evidence is given which suggests that the binding of the host structure to a clay substrate offers advantages, not only of transportability and usability but of stability, to the charge-transfer complex which may prove useful in a variety of commercial applications. The fundamental relationship between particle size, cation exchange capacity and chemical composition of clays was also examined. For Wyoming bentonite the extent of isomorphous substitution increases with decreasing particle size, causing the CEC to similarly increase, although the isomorphous substitution site: edge site ratio remains invarient throughout the particle size range studied.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reaction of localised C=C bonds on the surface of activated carbons has been shown to be an effective method of chemical modification especially using microwave-assisted reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hammerhead ribozymes are potent RNA molecules which have the potential to specifically inhibit gene expression by catalysing the trans-cleavage of mRNAs. However, they are unstable in biological fluids and cellular delivery poses a problem. Site-specific chemical modification of hammerhead ribozymes was evaluated as a means of enhancing biological stability. Chimeric, 2'-O-methylated ribozymes, containing only five unmodified ribonucleotides, were catalytically active in vitro (kcat = 1.46 min-1) and were significantly more stable in serum and lysosomal enzymes than unmodified (all-RNA) counterparts. Furthermore, they remained undegraded in cell-containing media for up to 8 hours. Stability enhancement allowed cellular uptake properties of radiolabelled ribozymes to be assessed following exogenous delivery. Studies in vulval and glial cell lines indicated that chimeric ribozymes became cell-associated via an inefficient process, which was energy and concentration dependant. A considerable proportion of ribozymes remained bound to cell-surface components, however, a small proportion (<1%) were internalised via mechanisms of adsorptive and / or receptor mediated endocytosis. Fluorescent microscopy indicated that ribozymes were localised within endosomal / lysosomal vesicles following cell entry. This was confirmed by immuno-electron microscopy, which allowed the detection of biotin-labelled ribozymes within the cell ultrastructure. Despite the predominant localisation within endocytic vesicles, a small proportion of internalised ribozymes appeared able to exit these compartments and penetrate target sites within the nucleus and cytoplasm. The ribozymes designed in this report were directed against the epidermal growth factor receptor mRNA, which is over-expressed in a malignant brain disease called glioblastoma multiforme. In order to examine the fate of ribozymes in the brain, the distribution of FITC-labelled ribozymes was examined following intra-cerebro ventricular injection to mice. FITC-ribozymes demonstrated high punctate pattern of distribution within the striatum and cortex, which appeared to represent localisation within cell bodies and dendritic processes. This suggested that delivery to glial cells in vivo may be possible. Finally, strategies were investigated to enhance the cellular delivery of ribozymes. Conjugation of ribozymes to anti~transferrin receptor antibodies improved cellular uptake 3-fold as a result of a specific interaction with transferrin receptors. Complexation with cationic liposomes also significantly improved cell association, however, some toxiclty was observed and this could be a limitation to their use. Overall, it would appear that hammerhead ribozymes can be chemically stabilised to allow direct exogenous administration in vivo. However, additional delivery strategies are probably required to improve cellular uptake, and thus, allow ribozymes to achieve their full potential as pharmaceutical agents. KEYWORDS: Catalytic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Introduction gives a brief resume' of the biologically important aspects of 5 -aminoimidazole -4 -carbozamide (1) and explores., in-depth, the synthetic routes to this imidazole. All documented reactions of 5 -aninoimidanole-4 -carboxamide are reviewed in detail, with particular emphasis on the preparation and subsequent coupling reactions of 5 –diazo-imidazole-4 -carboxamide (6). A series of thirteen novel amide 5-amino-2-arylazoimidazole-4-carboxamide derivatives (117-129) were prepared by the coupling of aryldiazonium salts with 5-aminoimidazole-4-carboxamide. Chemical modification of these azo-dyes resulted in the preparation of eight previously unknown acyl derivatives (136-143) Interaction of 5-amino-2-arylazoimidazole-4-carboxides with ethyl formate in sodium ethoxide effected pyrimidine ring closure to the novel 8-arylazohypoxanthines (144 and 145). Several reductive techniques were employed in an effort to obtain the elusive 2,5-diaminoimidazole-4-carboxamide (71),a candidate chemotherapeutic agent, from the arylazoiridazoles. No success can be reported although 5-amino-2-(3-aminoindazol-2-yl) imidazole-4-carboxamide (151) was isolated due to a partial reduction and intramolecular cyclisation of 5-amino72-(2-cyanaphenylazo)imidazole-4-carboxamide (122) .Further possible synthetic approaches to the diaminoimidazole are discussed in Chapter 4. An interesting degradation of a known unstable nitrohydrazone is described in Chapter 5.This resulted in formation of 1, 1-bis(pyrazol--3-ylazo)-1-nitroethane (164) instead of the expected cyclisation to a bicyclic tetrazine N-oxide. An improved preparation of 5-diazoinidazole-4-carboxamide has been achieved, and the diazo-azole formed cycloadducts with isocyanates to yield the hitherto unknown imidazo[5,1-d][1,2,3,5]tetrazin-7(6H)-ones. Eleven derivatives (167-177) of this new ring-system were prepared and characterised. Chemical and spectroscopic investigation showed this ring-system to be unstable under certain conditions, and a comparative study of stability within the group has been made. "Retro-cycloaddition" under protic and photolytic conditions was an unexpected property of 6-substituted imidazo[5,1-d][1,2,3,5]tetrazin--7(0)-ones.Selected examples of the imidazotetrazinone ring-system were tested for antitumour activity. The results of biological evaluation are given in Chapter 7, and have culminated in a Patent application by the collaborating body, May and Baker Ltd. One compound,3-carbamoyl-6-(2-chloro-ethyl)imidazo[5,1-d][1,2,3,5jtetrazin-7(6H)-one (175),shows striking anti-tumour activity in rodent test systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This edition of Polymer Degradation and Stability is dedicated to papers which were presented in the session on ‘Chemical Modification’ at the Third International Conference on Modification Degradation and Stabilisation of Polymers (MoDeSt) held in Lyon in August 2004. This was the third meeting of the MoDeSt Society which was set up in the year 2000 under the chairmanship of Professor Franco LaMantia; the earlier meetings were held in Palermo (2000) and Budapest (2002). The overall goal of the MoDeSt Society is to promote the latest research carried out in University laboratories, in public organisations and in industry through publications, and organisation of biannual scientific conferences and workshops that act as forums for scientific developments and for promoting networking between academics and industrialists from across the field of polymer modification, degradation and stabilisation. In September 2004, Professor Norman Billingham was elected as Chairman of the Society. The conference was organised by Dr Alain Michel and Veronique Bounor-Legare of the University Claude Bernard, Lyon 1, attracting over 250 delegates with the ‘Chemical Modification’ Session alone enjoying 54 oral presentations and many more poster presentations. We are all very grateful to the organisers for running such a successful and enjoyable meeting. I wish to thank my co-editors, Professors Philippe Dubois and Domenico Acierno and Dr Alain Michel, for their cooperation in the editorial task of the papers published in this special issue. On behalf of the editors of this issue, I wish to express our appreciation to the Editor-in-Chief of Polymer Degradation and Stability, Professor Norman Billingham, for the support and help received during the preparation of this special issue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal objective of this work was to improve the mechanical properties of glass fibre reinforced polypropylene (PP) composites by the mechanochemical modification of the PP. The modification of the PP was carried out by reactive processing of the PP with a modifier in a Buss Ko-Kneader. Two main types of modifier were evaluated one type based on N-substituted maleimides the others based on 2-allylamino-4,6-dichloro-1,3,5-triazine (ACCT). The modification of the PP was carried out in two stages. Firstly the PP was reactively processed with the modifier and a free radical initiator. The objective of this stage was to bind the modifier to the PP. In the second stage the modified PP was reactively processed with the glass fibre. The objective in this stage was to form a chemical bond between the bound modifier and the silane coupling agent on the surface of the glass. Two silane coupling agents were evaluated these had a aliphatic chloro group and an aliphatic amino group respectively available for reaction with the modifier. The modifiers synthesised for this work had two main functional groups. The first was a double bond for free radical addition to the PP. The second was an organic group chosen for its potential reactivity to the silane coupling agent. A preliminary investigation was carried out using maleic anhydride (MA) as the modifier, this is reactive to the amino silane coupled glass. Studies of a commercially available system were also carried out for comparison purposes. During the work it was found that the amino silane coupled glass fibres produced, without any modification being made to the PP, mechanical properties comparable to the commercial system. Further any modification added to the amino silane system failed to improve the mechanical performance and in some cases acted in the opposite fashion. This failure was evident even when a chemical bond between glass fibre and PP could be shown. In the case of the chloro silane coupled glass fibres the mechanical properties of the composite without modification were poorer than those of the commercial system. It was found that the mechanical properties of these systems could be enhanced by the modifiers, however, no system tested significantly out performed the commercial system. Of the two modifier systems tested those based on the n-substituted maleimides were more successful at enhancing mechanical properties than those based on ACCT. This was attributed to the Poor chemical binding of the ACCT based modifiers to the PP. During the work it was found that several of the modifiers improved the properties of the PP when no glass fibres were present, particularly the % elongation and impact strength. It is possible that these modifiers could be used to improve the impact performance of PP, this may be of particular interest in recycling. These modifiers have only been tested for improving the properties of glass fibre composites. The N-substituted maleimide based modifiers could be used as compatibleisers for alloys of PP and other polymers. These could function by the formation of the bond with PP via the double bond whilst the group attached to the nitrogen atom could react with the alloying polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the design and implementation of a new dynamic simulator called DASP. It is a computer program package written in standard Fortran 77 for the dynamic analysis and simulation of chemical plants. Its main uses include the investigation of a plant's response to disturbances, the determination of the optimal ranges and sensitivities of controller settings and the simulation of the startup and shutdown of chemical plants. The design and structure of the program and a number of features incorporated into it combine to make DASP an effective tool for dynamic simulation. It is an equation-oriented dynamic simulator but the model equations describing the user's problem are generated from in-built model equation library. A combination of the structuring of the model subroutines, the concept of a unit module, and the use of the connection matrix of the problem given by the user have been exploited to achieve this objective. The Executive program has a structure similar to that of a CSSL-type simulator. DASP solves a system of differential equations coupled to nonlinear algebraic equations using an advanced mixed equation solver. The strategy used in formulating the model equations makes it possible to obtain the steady state solution of the problem using the same model equations. DASP can handle state and time events in an efficient way and this includes the modification of the flowsheet. DASP is highly portable and this has been demonstrated by running it on a number of computers with only trivial modifications. The program runs on a microcomputer with 640 kByte of memory. It is a semi-interactive program, with the bulk of all input data given in pre-prepared data files with communication with the user is via an interactive terminal. Using the features in-built in the package, the user can view or modify the values of any input data, variables and parameters in the model, and modify the structure of the flowsheet of the problem during a simulation session. The program has been demonstrated and verified using a number of example problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modified oligonucleotides containing sulphur group have been useful tools for studies of carcinogenesis, protein or nucleic acid structures and functions, protein-nucleic acid interactions, and for antisense modulation of gene expression. One successful example has been the synthesis and study of oligodeoxynucleotides containing 6-thio-2'-deoxyguanine. 6-Thio-2-deoxyguanosine was first discovered as metabolic compound of 6- mercaptopurine (6-MP). Later, it was applied as drug to cure leukaemia. During the research of its toxicity, a method was developed to use the sulphur group as a versatile position for post-synthetic modification. The advantage of application of post-synthetic modification lies in its convenience. Synthesis of oligomers with normal sequences has become routine work in most laboratories. However, design and synthesis of a proper phosphoramidite monomer for a new modified nucleoside are always difficult tasks even for a skilful chemist. Thus an alternative method (post-synthetic method) has been invented to overcome the difficulties. This was achieved by incorporation of versatile nucleotides into oligomers which contain a leaving group, that is sufficiently stable to withstand the conditions of synthesis but can be substituted by nucleophiles after synthesis, to produce, a series of oligomers each containing a different modified base. In the current project, a phosphoramidite monomer with 6-thioguanine has been successfully synthesised and incorporated into RNA. A deprotection procedure, which is specific for RNA was designed for oligomers containing 6-thioguanosine. The results were validated by various methods (UV, HPLC, enzymatic digestion). Pioneer work in utilization of the versatile sulphur group for post-synthetic modification was also tested. Post-synthetic modification was also carried out on DNA with 6- deoxythioguanosine. Electrophilic reagents with various functional groups (alphatic, aromatic, fluorescent) and bi-functional groups have been attached with the oligomers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the protein-crosslinking enzymes transglutaminases (EC 2.3.2.13), as biocatalysts in the processing of wool textiles offers a variety of exciting and realistic possibilities, which include reducing the propensity of wool fabric to shrink and maintaining or increasing fabric strength. Guinea pig liver (GPL) transglutaminase or the microbial transglutaminase isolated from Streptoverticilium mobaraense, when applied to wool either alone or following a protease treatment, resulted in an increase in wool yarn and fabric strength (up to a 25% increase compared to a control). This indicates that transglutaminases can remediate the negative effects of proteolytic treatments in terms of loss in fibre strength. Incubation of samples pretreated with different oxidative and reducing agents with both sources of transglutaminases led to significant increases in tensile strength for all samples tested, suggesting that yarn strength lost following chemical treatments can also be recovered. The two different transglutaminases (TGases) could also impart a significant reduction in fabric shrinkage. The incorporation of primary amine transglutaminase substrates into wool fibres, with a view to altering wool functionality, was demonstrated using the incorporation of the fluorescent primary amine fluorescein cadaverine (FC). Incubation of wool with this fluorescent amine and transglutaminase led to high levels of incorporation into the fibres. The treatment of wool textiles with transglutaminases indicates that a number of novel and radically different finishes for wool textiles can be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.