9 resultados para BOLD FMRI SIGNAL
em Aston University Research Archive
Resumo:
In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able to construct images which covary with real female body mass (indexed with BMI) and not with body shape (indexed with WHR), and vice versa. Twelve observers (6 male and 6 female) rated these images for attractiveness during an fMRI study. The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in addition to activation in higher visual areas (such as the extrastriate body area), changing BMI also modulated activity in the caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered individuals.
Resumo:
Preface. The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.
Resumo:
The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.
Resumo:
Recently, we introduced a new 'GLM-beamformer' technique for MEG analysis that enables accurate localisation of both phase-locked and non-phase-locked neuromagnetic effects, and their representation as statistical parametric maps (SPMs). This provides a useful framework for comparison of the full range of MEG responses with fMRI BOLD results. This paper reports a 'proof of principle' study using a simple visual paradigm (static checkerboard). The five subjects each underwent both MEG and fMRI paradigms. We demonstrate, for the first time, the presence of a sustained (DC) field in the visual cortex, and its co-localisation with the visual BOLD response. The GLM-beamformer analysis method is also used to investigate the main non-phase-locked oscillatory effects: an event-related desynchronisation (ERD) in the alpha band (8-13 Hz) and an event-related synchronisation (ERS) in the gamma band (55-70 Hz). We show, using SPMs and virtual electrode traces, the spatio-temporal covariance of these effects with the visual BOLD response. Comparisons between MEG and fMRI data sets generally focus on the relationship between the BOLD response and the transient evoked response. Here, we show that the stationary field and changes in oscillatory power are also important contributors to the BOLD response, and should be included in future studies on the relationship between neuronal activation and the haemodynamic response. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Magnetoencephalography (MEG) is the measurement of the magnetic fields generated outside the head by the brain’s electrical activity. The technique offers the promise of high temporal and spatial resolution. There is however an ambiguity in the inversion process of estimating what goes on inside the head from what is measured outside. Other techniques, such as functional Magnetic Resonance Imaging (fMRI) have no such inversion problems yet suffer from poorer temporal resolution. In this study we examined metrics of mutual information and linear correlation between volumetric images from the two modalities. Measures of mutual information reveal a significant, non-linear, relationship between MEG and fMRI datasets across a number of frequency bands.
A multimodal perspective on the composition of cortical oscillations:frontiers in human neuroscience
Resumo:
An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integratedelectroencephalography(EEG) and fMRI,orparallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information about the relationship between E/MEG and the focal networks from which these signals emanate. Consequently, the genesis and composition of E/MEG oscillations requires further clarification. Here we aim to contribute to understanding through a series of parallel measurements of primary motor cortex (M1) oscillations, using human MEG and in-vitro rodent local field potentials. We compare spontaneous activity in the ~10Hz mu and 15-30Hz beta frequency ranges and compare MEG signals with independent and integrated layers III and V(LIII/LV) from in vitro recordings. We explore the mechanisms of oscillatory generation, using specific pharmacological modulation with the GABA-A alpha-1 subunit modulator zolpidem. Finally, to determine the contribution of cortico-cortical connectivity, we recorded in-vitro M1, during an incision to sever lateral connections between M1 and S1 cortices. We demonstrate that frequency distribution of MEG signals appear have closer statistically similarity with signals from integrated rather than independent LIII/LV laminae. GABAergic modulation in both modalities elicited comparable changes in the power of the beta band. Finally, cortico-cortical connectivity in sensorimotor cortex (SMC) appears to directly influence the power of the mu rhythm in LIII. These findings suggest that the MEG signal is an amalgam of outputs from LIII and LV, that multiple frequencies can arise from the same cortical area and that in vitro and MEG M1 oscillations are driven by comparable mechanisms. Finally, corticocortical connectivity is reflected in the power of the SMC mu rhythm. © 2013 Ronnqvist, Mcallister, Woodhall, Stanford and Hall.
Resumo:
The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMRI) to record brain activations from 74 healthy subjects who engaged in a facial affect recognition task; subjects viewed and identified fearful compared to neutral faces. There was no main effect of the COMT polymorphism, gender or genotypegender interaction on task performance. We found a significant effect of gender on brain activations in the left amygdala and right temporal pole, where females demonstrated increased activations over males. Within these regions, Val/Val carriers showed greater signal magnitude compared to Met/Met carriers, particularly in females. The COMT Val108/158Met polymorphism impacts on gender-related patterns of activation in limbic and paralimbic regions but the functional significance of any oestrogen-related COMT inhibition appears modest. Copyright © 2008 CINP.
Resumo:
The goal of this project was to investigate the neural correlates of reading impairment in dyslexia as hypothesised by the main theories – the phonological deficit, visual magnocellular deficit and cerebellar deficit theories, with emphasis on individual differences. This research took a novel approach by: 1) contrasting the predictions in one sample of participants with dyslexia (DPs); 2) using a multiple-case study (and between-group comparisons) to investigate differences in BOLD between each DP and the controls (CPs); 3) demonstrating a possible relationship between reading impairment and its hypothesised neural correlates by using fMRI and a reading task. The multiple-case study revealed that the neural correlates of reading in dyslexia in all cases are not in agreement with the predictions of a single theory. The results show striking individual differences - even, where the neural correlates of reading in two DPs are consistent with the same theory, the areas can differ. A DP can exhibit under-engagement in an area in word, but not in pseudoword reading and vice versa, demonstrating that underactivation in that area cannot be interpreted as a ‘developmental lesion’. Additional analyses revealed complex results. Within-group analyses between behavioural measures and BOLD showed correlations in the predicted regions, areas outside ROI, and lack of correlations in some predicted areas. Comparisons of subgroups which differed on Orthography Composite supported the MDT, but only for Words. The results suggest that phonological scores are not a sufficient predictor of the under-engagement of phonological areas during reading. DPs and CPs exhibited correlations between Purdue Pegboard Composite and BOLD in cerebellar areas only for Pseudowords. Future research into reading in dyslexia should use a more holistic approach, involving genetic and environmental factors, gene by environment interaction, and comorbidity with other disorders. It is argued that multidisciplinary research, within the multiple-deficit model holds significant promise here.
Resumo:
Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task.