8 resultados para BINARY SOLVENT MIXTURES
em Aston University Research Archive
Resumo:
As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.
Resumo:
Several cationic initiator systems were developed and used to polymerise oxetane with two oxonium ion initiator systems being investigated in depth. The first initiator system was generated by the elimination of a chloride group from a chloro methyl ethyl ether. Adding a carbonyl co-catalyst to a carbocationic centre generated the second initiator system. It was found that the anion used to stabilise the initiator was critical to the initial rate of polymerisation of oxetane with hexafluoroantimonate resulting in the fastest polymerisations. Both initiator systems could be used at varying monomer to initiator concentrations to control the molecular number average, Mn, of the resultant polymer. Both initiator systems showed living characteristics and were used to polymerise further monomers and generate higher molecular weight material and block copolymers. Oxetane and 3,3-dimethyl oxetane can both be polymerised using either oxonium ion initiator system in a variety of DCM or DCM/1,4-dioxane solvent mixtures. The level of 1,4-dioxane does have an impact on the initial rate of polymerisation with higher levels resulting in lower initial rates of polymerisation but do tend to result in higher polydispersities. The level of oligomer formation is also reduced as the level of 1,4-dioxane is increased. 3,3-bis-bromomethyl oxetane was also polymerised but a large amount of hyperbranching was seen at the bromide site resulting in a difficult to solvate polymer system. Multifunctional initiator systems were also generated using the halide elimination reactions with some success being achieved with 1,3,5-tris-bromomethyl-2,4,6-tris-methyl-benzene derived initiator system. This offered some control over the molecular number average of the resultant polymer system.
Resumo:
This thesis describes the production of advanced materials comprising a wide array of polymer-based building blocks. These materials include bio-hybrid polymer-peptide conjugates, based on phenylalanine and poly(ethylene oxide), and polymers with intrinsic microporosity (PIMs). Polymer-peptides conjugates were previously synthesised using click chemistry. Due to the inherent disadvantages of the reported synthesis, a new, simpler, inexpensive protocol was sought. Three synthetic methods based on amidation chemistry were investigated for both oligopeptide and polymerpeptide coupling. The resulting conjugates produced were then assessed by various analytical techniques, and the new synthesis was compared with the established protocol. An investigation was also carried out focussing on polymer-peptide coupling via ester chemistry, involving deprotection of the carboxyl terminus of the peptide. Polymer-peptide conjugates were also assessed for their propensity to self-assemble into thixotropic gels in an array of solvent mixtures. Determination of the rules governing this particular self-assembly (gelation) was required. Initial work suggested that at least four phenylalanine peptide units were necessary for self-assembly, due to favourable hydrogen bond interactions. Quantitative analysis was carried out using three analytical techniques (namely rheology, FTIR, and confocal microscopy) to probe the microstructure of the material and provided further information on the conditions for self-assembly. Several polymers were electrospun in order to produce nanofibres. These included novel materials such as PIMs and the aforementioned bio-hybrid conjugates. An investigation of the parameters governing successful fibre production was carried out for PIMs, polymer-peptide conjugates, and for nanoparticle cages coupled to a polymer scaffold. SEM analysis was carried out on all material produced during these electrospinning experiments.
Resumo:
A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.
Resumo:
Oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) decorated gold nanoparticles (AuNPs) have potential applications in bionanotechnology due to their unique property of preventing the nonspecific absorption of protein on the colloidal surface. For colloid-protein mixtures, a previous study (Zhang et al. J. Phys. Chem. A 2007, 111, 12229) has shown that the OEG SAM-coated AuNPs become unstable upon addition of proteins (BSA) above a critical concentration, c*. This has been explained as a depletion effect in the two-component system. Adding salt (NaCl) can reduce the value of c*; that is, reduce the stability of the mixture. In the present work, we study the influence of the nature of the added salt on the stability of this two-component colloid-protein system. It is shown that the addition of various salts does not change the stability of either protein or colloid in solution in the experimental conditions of this work, except that sodium sulfate can destabilize the colloidal solutions. In the binary mixtures, however, the stability of colloid-protein mixtures shows significant dependence on the nature of the salt: chaotropic salts (NaSCN, NaClO4, NaNO3, MgCl2) stabilize the system with increasing salt concentration, while kosmotropic salts (NaCl, Na2SO4, NH4Cl) lead to the aggregation of colloids with increasing salt concentration. These observations indicate that the Hofmeister effect can be enhanced in two-component systems; that is, the modification of the colloidal interface by ions changes significantly the effective depletive interaction via proteins. Real time SAXS measurements confirm in all cases that the aggregates are in an amorphous state.
Resumo:
The literature on the potential use of liquid ammonia as a solvent for the extraction of aromatic hydrocarbons from mixtures with paraffins, and the application of reflux, has been reviewed. Reference is made to extractors suited to this application. A pilot scale extraction plant was designed comprising a Scm. diameter by 12Scm. high, 50 stage Rotating Disc Contactor with 2 external settlers. Provision was made for operation with, or without, reflux at a pressure of 10 bar and ambient temperature. The solvent recovery unit consisted of an evaporator, compressor and condenser in a refrigeration cycle. Two systems were selected for study, Cumene-n-Heptane-Ammonia and Toluene-Methylcyclohexane-Ammonia. Equlibrium data for the first system was determined experimentally in a specially-designed, equilibrium bomb. A technique was developed to withdraw samples under pressure for analysis by chromatography and titration. The extraction plant was commissioned with a kerosine-water system; detailed operating procedures were developed based on a Hazard and Operability Study. Experimental runs were carried out with both ternary ammonia systems. With the system Toluene-Methylcyclohexane-Ammonia the extraction plant and the solvent recovery facility, operated satisfactorily, and safely,in accordance with the operating procedures. Experimental data gave reasonable agreement with theory. Recommendations are made for further work with plant.
Resumo:
A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.
Resumo:
The compaction behaviour of powders with soft and hard components is of particular interest to the paint processing industry. Unfortunately, at the present time, very little is known about the internal mechanisms within such systems and therefore suitable tests are required to help in the interpretative process. The TRUBAL, Distinct Element Method (D.E.M.) program was the method of investigation used in this study. Steel (hard) and rubber (soft) particles were used in the randomly-generated, binary assemblies because they provided a sharp contrast in physical properties. For reasons of simplicity, isotropic compression of two-dimensional assemblies was also initially considered. The assemblies were first subject to quasi-static compaction, in order to define their behaviour under equilibrium conditions. The stress-strain behaviour of the assemblies under such conditions was found to be adequately described by a second-order polynomial expansion. The structural evolution of the simulation assemblies was also similar to that observed for real powder systems. Further simulation tests were carried out to investigate the effects of particle size on the compaction behaviour of the two-dimensional, binary assemblies. Later work focused on the quasi-static compaction behaviour of three-dimensional assemblies, because they represented more realistic particle systems. The compaction behaviour of the assemblies during the simulation experiments was considered in terms of percolation theory concepts, as well as more familiar macroscopic and microstructural parameters. Percolation theory, which is based on ideas from statistical physics, has been found to be useful in the interpretation of the mechanical behaviour of simple, elastic lattices. However, from the evidence of this study, percolation theory is also able to offer a useful insight into the compaction behaviour of more realistic particle assemblies.