2 resultados para BE-9 PB-208

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbiological, physical and chemical changes which occur instored, harvested sugarcane were studied in Jamaica and the United Kingdom.The degree of deterioration was proportional to time of storage, and wasrevealed by a statistically significant reduction in sucrose content.Other symptoms included a fall in pH, and increases in reducing sugars,dextran, viscosity, and microbial count. Cut cane was universally infectedwith Leuconostoc mesenteroides, which reached a maximum count of 107 to 108organisms per ml. juice within. 3 to 4 days of harvest. Counts of othermicroorganisms were generally insignificant, except for occasional lactobacilli.A new dextran-forming species was named Lactobacillus confusus.Microorganisms isolated from deteriorated cane were screened for theirability to cause deterioration of a sterile, synthetic cane juice. L. mesenteroides strains were the most deteriogenic, but attempts toreproduce the symptoms of "sour" cane by inoculation of this organism intocut cane were only partially successful. L. mesenteroides was present in the soil and the epiphytic flora of the stalk. The principal vector of infection appeared to be the cutters' machete, especially in wet weather. Cane harvested by a chopper machine deteriorated more rapidly than hand-cut whole-stalks. Economic losses due to deterioration of harvested cane were estimated to be 9.2% of the initial recoverable sugar for the 1969 crop at Frome Estate, Jamaica. Dextran content was a useful indicator of cane biodeterioration. The dextran content of mill juices was correlated with rainfall, and significant correlations were obtained between dextran content and viscosity of mill syrups and the amount of sugar lost in final molasses; it also caused the formation of elongated crystals. Attempts to control sour cane by chemical and physical methods were unsuccessful, and it was concluded that the only solution is to mill cane within 24 hours of harvest. A novel method for removal of dextran from mill juices by enzymic treatment with dextranase was developed and patented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Continental red bed sequences are host, on a worldwide scale, to a characteristic style of mineralisation which is dominated by copper, lead, zinc, uranium and vanadium. This study examines the features of sediment-hosted ore deposits in the Permo-Triassic basins of Western Europe, with particular reference to the Cu-Pb-Zn-Ba mineralisation in the Cheshire Basin, northwest England, the Pb-Ba-F deposits of the Inner Moray Firth Basin, northeast Scotland, and the Pb-rich deposits of the Eifel and Oberpfalz regions, West Germany. The deposits occur primarily but not exclusively in fluvial and aeolian sandstones on the margins of deep, avolcanic sedimentary basins containing red beds, evaporites and occasionally hydrocarbons. The host sediments range in age from Permian to Rhaetian and often contain (or can be inferred to have originally contained) organic matter. Textural studies have shown that early diagenetic quartz overgrowths precede the main episode of sulphide deposition. Fluid inclusion and sulphur isotope data have significantly constrained the genetic hypotheses for the mineralisation and a model involving the expulsion of diagenetic fluids and basinal brines up the faulted margins of sedimentary basins is favoured. Consideration of the development of these sedimentary basins suggests that ore emplacement occurred during the tectonic stage of basin evolution or during basin inversion in the Tertiary. ð34S values for barite in the Cheshire Basin range from 13.8% to 19.3% and support the theory that the Upper Triassic evaporites were the principal sulphur source for the mineralisation and provided the means by which mineralising fluids became saline. In contrast, δ34S values for barite in the Inner Moray Firth Basin (mean δ34S = + 29%) are not consistent with simple derivation of sulphur from the evaporite horizons in the basin and it is likely that sulphur-rich Jurassic shales supplied the sulphur for the mineralisation at Elgin. Possible sources of sulphur for the mineralisation in West Germany include hydrothermal vein sulphides in the underlying Devonian sediments and evaporites in the overlying Muschelkalk. Textural studies of the deeply buried sandstones in the Cheshire Basin reveal widespread dissolution and replacement of detrital phases and support the theory that red bed diagenetic processes are responsible for the release of metals into pore fluids. The ore solutions are envisaged as being warm (60-150%C), saline (9-22 wt % equiv NaCl) fluids in which metals were transported as chloride complexes. The distribution of δ34S values for sulphides in the Cheshire Basin (-1.8% to + 16%), the Moray Firth Basin (-4.8% to + 27%) and the German Permo-Triassic Basins (-22.2% to -12.2%) preclude a magmatic source for the sulphides and support the contention that sulphide precipitation is thought to result principally from sulphate reduction processes, although a decrease in temperature of the ore fluid or reaction with carbonates may also be important. Methane is invoked as the principal reducing agent in the Cheshire Basin, whilst terrestrial organic debris and bacterial reduction processes are thought to have played a major part in the genesis of the German ore deposits.