3 resultados para BASIS PURSUIT
em Aston University Research Archive
Resumo:
This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio.
Resumo:
Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition subjected to a global constraint on sparsity. The approach aims at producing a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation, and is realized by means of i)forward steps for the upgrading of an approximation and/or ii) backward steps for the corresponding downgrading. The advantage of the strategy is illustrated by approximation of music signals using redundant trigonometric dictionaries. In addition to rendering stunning improvements in sparsity with respect to the concomitant trigonometric basis, these dictionaries enable a fast implementation of the approach via the Fast Fourier Transform
Resumo:
A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.