21 resultados para B.I.M.
em Aston University Research Archive
Resumo:
Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C 2C12 myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 205 proteasome α-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 μM). At a concentration of 4 nM, PIF induced a transient decrease in IκBα levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IκBα, an NF-κB inhibitory protein, returned to normal after 60 min. Depletion of IκBα from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-κB/IκB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-κB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-κB inhibitor peptide SN50, suggesting that NF-κB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-κB accumulation in the nucleus. © 2003 Cancer Research UK.
Resumo:
Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Resumo:
Using a new optical configuration free from the influence of photorefractive optical nonlinearity, we investigate the main characteristics of the spatial subharmonic K/2 excited in a Bi12SiO20 crystal by a light-intensity pattern with wave vector K and frequency O. It is shown that in a large region of intensity and applied electric field the optimum value O of the frequency corresponds to the conditions of parametric excitation of the weakly damped eigenmodes of the medium: the space-charge waves. The threshold and above-threshold characteristics of the subharmonic regime are in good agreement with the theory.
Resumo:
The main objective of the work presented in this thesis is to investigate the two sides of the flute, the face and the heel of a twist drill. The flute face was designed to yield straight diametral lips which could be extended to eliminate the chisel edge, and consequently a single cutting edge will be obtained. Since drill rigidity and space for chip conveyance have to be a compromise a theoretical expression is deduced which enables optimum chip disposal capacity to be described in terms of drill parameters. This expression is used to describe the flute heel side. Another main objective is to study the effect on drill performance of changing the conventional drill flute. Drills were manufactured according to the new flute design. Tests were run in order to compare the performance of a conventional flute drill and non conventional design put forward. The results showed that 50% reduction in thrust force and approximately 18% reduction in torque were attained for the new design. The flank wear was measured at the outer corner and found to be less for the new design drill than for the conventional one in the majority of cases. Hole quality, roundness, size and roughness were also considered as a further aspect of drill performance. Improvement in hole quality is shown to arise under certain cutting conditions. Accordingly it might be possible to use a hole which is produced in one pass of the new drill which previously would have required a drilled and reamed hole. A subsidiary objective is to design the form milling cutter that should be employed for milling the foregoing special flute from drill blank allowing for the interference effect. A mathematical analysis in conjunction with computing technique and computers is used. To control the grinding parameter, a prototype drill grinder was designed and built upon the framework of an existing cincinnati cutter grinder. The design and build of the new grinder is based on a computer aided drill point geometry analysis. In addition to the conical grinding concept, the new grinder is also used to produce spherical point utilizing a computer aided drill point geometry analysis.
Resumo:
We investigate numerically the dependence of higher harmonics of the space-charge field on the detuning frequency between the pump waves, which form a running interference pattern. Bistability and hysteresis of harmonics are predicted for a contrast of the interference pattern m =(0.25-0.3). For contrasts m˜1 and small detuning frequencies we show the existence of a narrow resonance, connected with the nonlinear excitation of a slowly decreasing sequence of spatial harmonics. For experiments we use a BSO crystal in the optical configuration which avoids nonlinear optical distortions. The experimental data show good qualitative agreement with theory.
Resumo:
Using a new optical configuration free from the influence of photorefractive optical nonlinearity, we investigate the main characteristics of the spatial subharmonic K/2 excited in a Bi12SiO20 crystal by a light-intensity pattern with wave vector K and frequency O. It is shown that in a large region of intensity and applied electric field the optimum value O of the frequency corresponds to the conditions of parametric excitation of the weakly damped eigenmodes of the medium: the space-charge waves. The threshold and above-threshold characteristics of the subharmonic regime are in good agreement with the theory.
Resumo:
We investigate experimentally and theoretically the dependence of the amplitude of the spatial fundamental grating, created by a pair of coherent light beams while using the running grating technique [M.P. Petrov, S.I. Stepanov and A.V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer Series in Optical Sciences (Springer, 1991); P. Refregier, L. Solymar, H. Rajbenbach and J.P. Huignard, J. Appl. Phys. 58 (1985) 45], as a function of detuning frequency and beam ratio ß in photorefractive Bi12SiO20. It is shown that for ß > 0.05, in addition to the main peak in the frequency dependence of the amplitude, there is an additional peak of lower frequency which, as a rule, dominates the main peak. The position of the main peak depends on ß. The experimental results are in good agreement with the theoretical analysis and the general ideas about excitation and nonlinear interaction of weakly damped space-charge waves.
Resumo:
On the basis of the standard model for the photorefractive nonlinearity we investigate whether a systematic description of the dependence of two-beam energy exchange on beam polarization and grating vector K is possible. Our result is that there is good agreement between theory and experiment with respect to the polarization properties and semi-quantitative agreement with respect to the K-dependence of the energy exchange.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
Using a new experimental geometry, we have proved for the first time that the generation of spatial subharmonic gratings in photorefractive crystals is not dependent on optical nonlinearity. We present results which confirm that the subharmonic gratings result from a parametric excitation of ultra low-frequency eigenmodes of a crystal by a time modulated fundamental grating.
Resumo:
Using a new experimental geometry, we have proved for the first time that the generation of spatial subharmonic gratings in photorefractive crystals is not dependent on optical nonlinearity. We present results which confirm that the subharmonic gratings result from a parametric excitation of ultra low-frequency eigenmodes of a crystal by a time modulated fundamental grating.
Resumo:
On the basis of the standard model for the photorefractive nonlinearity we investigate whether a systematic description of the dependence of two-beam energy exchange on beam polarization and grating vector K is possible. Our result is that there is good agreement between theory and experiment with respect to the polarization properties and semi-quantitative agreement with respect to the K-dependence of the energy exchange.
Resumo:
We investigate experimentally and theoretically the dependence of the amplitude of the spatial fundamental grating, created by a pair of coherent light beams while using the running grating technique [M.P. Petrov, S.I. Stepanov and A.V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer Series in Optical Sciences (Springer, 1991); P. Refregier, L. Solymar, H. Rajbenbach and J.P. Huignard, J. Appl. Phys. 58 (1985) 45], as a function of detuning frequency and beam ratio ß in photorefractive Bi12SiO20. It is shown that for ß > 0.05, in addition to the main peak in the frequency dependence of the amplitude, there is an additional peak of lower frequency which, as a rule, dominates the main peak. The position of the main peak depends on ß. The experimental results are in good agreement with the theoretical analysis and the general ideas about excitation and nonlinear interaction of weakly damped space-charge waves.
Resumo:
We investigate numerically the dependence of higher harmonics of the space-charge field on the detuning frequency between the pump waves, which form a running interference pattern. Bistability and hysteresis of harmonics are predicted for a contrast of the interference pattern m =(0.25-0.3). For contrasts m˜1 and small detuning frequencies we show the existence of a narrow resonance, connected with the nonlinear excitation of a slowly decreasing sequence of spatial harmonics. For experiments we use a BSO crystal in the optical configuration which avoids nonlinear optical distortions. The experimental data show good qualitative agreement with theory.