5 resultados para B-CONTAINING LIPOPROTEINS

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin-proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα, proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin-proteasome pathway, as determined by 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSSI and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin-proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB. © 2005 Cancer Research UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improved methods of insulin delivery are required for the treatment of insulin-dependent diabetes mellitus (IDDM) to achieve a more physiological profile of glucose homeostasis. Somatic cell gene therapy offers the prospect that insulin could be delivered by an autologous cell implant, engineered to secrete insulin in response to glucose. This study explores the feasibility of manipulating somatic cells to behave as a surrogate insulin-secreting β-cells. Initial studies were conducted using mouse pituitary AtT20 cells as a model, since these cells possess an endogenous complement of enzymes capable of processing proinsulin to mature insulin. Glucose sensitive insulin secretion was conferred to these cells by transfection with plasmids containing the human preproinsulin gene (hppI-1) and the GLUT2 gene for the glucose transporter isoform 2. Insulin secretion was responsive to changes in the glucose concentration up to about 50μM. Further studies to up-rate this glucose sensitivity into the mM range will require manipulation of the hexokinase and glucokinase enzymes. Intraperitoneal implantation of the manipulated AtT20 cells into athymic nude mice with streptozotocin-induced diabetes resulted in decreased plasma glucose concentrations. The cells formed vascularised tumours in vivo which were shown to contain insulin-secreting cells. To achieve proinsulin processing in non-endocrine cells, co-transfection with a suitable enzyme, or mutagenesis of the proinsulin itself are necessary. The mutation of the human preproinsulin gene to the consensus sequence for cleavage by the subtilisin-like serine protease, furin, was carried out. Co-transfection of human fibroblasts with wild-type proinsulin and furin resulted in 58% conversion to mature insulin by these cells. Intraperitoneal implantation of the mature-insulin secreting human fibroblasts into the diabetic nude mouse animal model gave less encouraging results than the AtT20 cells, apparently due to poor vascularisation. Cell aggregations removed from the mice at autopsy were shown to contain insulin secreting cells only at the periphery. This thesis provides evidence that it is possible to construct, by cellular engineering, a glucose-sensitive insulin-secreting surrogate β-cell. Therefore, somatic cell gene therapy offers a feasible alternative for insulin delivery in IDDM patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a clinical need for a more effective vaccine against hepatitis B, and in particular vaccines that may be suitable for therapeutic administration. This study assesses the potential of cationic surfactant vesicle based formulations using two agents; the cationic amine containing [N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) or dimethyl dioctadecylammonium bromide (DDA) with hepatitis B surface antigen (HBsAg). Synthetic mycobacterial cord factor, trehalose 6,6′-dibehenate (TDB) has been used as an adjuvant and the addition of 1-monopalmitoyl glycerol (C16:0) (MP) and cholesterol (Chol) to DDA-TDB is assessed for its potential to facilitate formation of dehydration-rehydration vesicles (DRV) at room temperature, and the effect of this on immune responses. A DRV formulation is directly compared to an adsorbed formulation of the same composition and preparation protocol (MP:dioleoyl phosphoethanolamine (DOPE):Chol:DC-Chol) and the direct substitution of MP with phosphatidylcholine (PC) is also compared in DRV antigen-entrapped formulations. MP and Chol were shown to facilitate the use of DDA-TDB in DRV formulations prepared at room temperature, whilst there was marginal alteration of immunogenicity (a reduction in HBsAg-specific IL-2). The HBsAg adsorbed DRV formulation was not significantly different from the HBsAg entrapped DRV formulation. Overall, DDA formulations incorporating TDB showed markedly increased antigen specific splenocyte proliferation and elicited cytokine production concomitant with a strong T cell driven response, delineating formulations that may be useful for further evaluation of their clinical potential. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue-crack propagation and threshold behaviour of a C-Mn steel containing boron has been investigated at a range of strength levels suitable for mining chain applications. The heat-treatment variables examined include two austenitizing temperatures (900 degree C and 1250 degree C) and a range of tempering treatments from the as-quenched condition to tempering at 400 degree C. In mining applications the haulage chains undergo a 'calibration' process which has the effect of imposing a tensile prestrain on the chain links before they go into service. Prestrain is shown to reduce threshold values in these steels and this behaviour is related to its effects on the residual stress distribution in the test specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.