2 resultados para Béns culturals

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two algorithms, based onBayesian Networks (BNs), for bacterial subcellular location prediction, are explored in this paper: one predicts all locations for Gram+ bacteria and the other all locations for Gram- bacteria. Methods were evaluated using different numbers of residues (from the N-terminal 10 residues to the whole sequence) and residue representation (amino acid-composition, percentage amino acid-composition or normalised amino acid-composition). The accuracy of the best resulting BN was compared to PSORTB. The accuracy of this multi-location BN was roughly comparable to PSORTB; the difference in predictions is low, often less than 2%. The BN method thus represents both an important new avenue of methodological development for subcellular location prediction and a potentially value new tool of true utilitarian value for candidate subunit vaccine selection.