2 resultados para Axon Branching

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of visual symptoms have been associated with Alzheimer's disease (AD). These include delays in flash visual evoked potentials which indicate a disruption of the integrity of the visual pathway. Examination of the visual cortex has revealed the presence of both senile plaques and neurofibrillary tangles. The purpose of this study was to determine whether there were differences in the number and/or size of optic nerve axons between AD patients and non-demented age-matched controls. Five optic nerves from AD patients and five from age-matched controls were embedded in epon resin and 1 micron sections prepared on a Reichert ultramicrotome. The sections were then stained in toluidine blue and examined at x400 magnification. The numbers of axons were counted in photographs of three fields taken at random from each section. To evaluate the axon diameters, 70 axons were chosen at random from each patient and measured using a calibrated eyepiece graticule. The total axon counts revealed no significant differences between the AD optic nerves and the age-matched controls. However, the frequency distribution of axon diameters was significantly different in the two groups. In particular, there were fewer larger diameter axons in patients with AD as previously reported. Degeneration of the large diameter axons suggests involvement of the magnocellular as opposed to the parvocellular pathways. Hence, there could be differences in visual performance of AD patients compared with normals which could be important in clinical diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial tip cells guide angiogenic sprouts by exploring the local environment for guidance cues such as vascular endothelial growth factor (VegfA). Here we present Flt1 (Vegf receptor 1) loss- and gain-of-function data in zebrafish showing that Flt1 regulates tip cell formation and arterial branching morphogenesis. Zebrafish embryos expressed soluble Flt1 (sFlt1) and membrane-bound Flt1 (mFlt1). In Tg(flt1(BAC):yfp) × Tg(kdrl:ras-cherry)(s916) embryos, flt1:yfp was expressed in tip, stalk and base cells of segmental artery sprouts and overlapped with kdrl:cherry expression in these domains. flt1 morphants showed increased tip cell numbers, enhanced angiogenic behavior and hyperbranching of segmental artery sprouts. The additional arterial branches developed into functional vessels carrying blood flow. In support of a functional role for the extracellular VEGF-binding domain of Flt1, overexpression of sflt1 or mflt1 rescued aberrant branching in flt1 morphants, and overexpression of sflt1 or mflt1 in controls resulted in short arterial sprouts with reduced numbers of filopodia. flt1 morphants showed reduced expression of Notch receptors and of the Notch downstream target efnb2a, and ectopic expression of flt4 in arteries, consistent with loss of Notch signaling. Conditional overexpression of the notch1a intracellular cleaved domain in flt1 morphants restored segmental artery patterning. The developing nervous system of the trunk contributed to the distribution of Flt1, and the loss of flt1 affected neurons. Thus, Flt1 acts in a Notch-dependent manner as a negative regulator of tip cell differentiation and branching. Flt1 distribution may be fine-tuned, involving interactions with the developing nervous system.