11 resultados para Average temperature

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dispersal, establishment and survival were studied in a population of Hypogymnia physodes (L.) Nyl. growing on an isolated tree (Prunus blireiana L.) at a site in North Seattle, U.S.A. Lichen propagules were trapped daily on adhesive strips pinned to various sites on the tree over a period of 36 days. Both soredia and fragments were deposited on the strips, particularly on the upper branches of the tree, with soredia being considerably more numerous than fragments. Daily variation in total soredia deposited did not correlate with 10 climatic variables including wind speed, relative humidity and average temperature. Establishment and survival of propagules were studied by introducing soredia and fragments into various sites on the bark and by observing the distribution of small thalli in different microsites. Microtopography of bark significantly influenced establishment and survival. Survival was poor on smooth bark compared with survival on algal or lichen crusts and on rough bark. Survival of soredia did not vary significantly at different locations on the tree. It is likely that colonization of the tree by H. physodes occurs largely by soredia. Colonization appears to be limited more by the range of dispersal over the tree than by differential survival over different parts of the tree.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033nm in the germanate glass fiber and 2nd order resonances at ~1694 and ~1677nm with strengths up to 14dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity ~20pm/°C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219pm/µe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800 nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 10(11)W/cm(2), the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033 nm in the germanate glass fiber and 2nd order resonances at approximately 1694 and approximately 1677 nm with strengths up to 14 dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity approximately 20 pm/ degrees C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219 pm/microepsilon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature of the coolant is known to have significant influence on engine performance and emissions. Whereas existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used. In this study, Jatropha oil was blended separately with ethanol and butanol. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of fossil diesel. The coolant temperature was varied between 50°C and 95°C. The combustion process enhanced for both diesel and biofuel blend, when the coolant temperature was increased. The carbon dioxide emissions for both diesel and biofuel blend were observed to increase with temperature. The carbon monoxide, oxygen and lambda values were observed to decrease with temperature. When the engine was operated using diesel, nitrogen oxides emissions correlated in an opposite manner to smoke opacity; however, nitrogen oxides emissions and smoke opacity correlated in an identical manner for biofuel blend. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used. The study concludes that both biofuel blend and fossil diesel produced identical correlations between coolant temperature and engine performance. The trends of nitrogen oxides and smoke emissions with cooling temperatures were not identical to fossil diesel when biofuel blend was used in the engine.