5 resultados para Average models
em Aston University Research Archive
Resumo:
There is an increase in the use of multi-pulse, rectifier-fed motor-drive equipment on board more-electric aircraft. Motor drives with feedback control appear as constant power loads to the rectifiers, which can cause instability of the DC filter capacitor voltage at the output of the rectifier. This problem can be exacerbated by interactions between rectifiers that share a common source impedance. In order that such a system can be analysed, there is a need for average, dynamic models of systems of rectifiers. In this study, an efficient, compact method for deriving the approximate, linear, large-signal, average models of two heterogeneous systems of rectifiers, which are fed from a common source impedance, is presented. The models give insight into significant interaction effects that occur between the converters, and that arise through the shared source impedance. First, a 6-pulse and doubly wound, transformer-fed, 12-pulse rectifier system is considered, followed by a 6-pulse and autotransformer-fed, 12-pulse rectifier system. The system models are validated against detailed simulations and laboratory prototypes, and key characteristics of the two system types are compared.
Resumo:
To carry out stability and voltage regulation studies on more electric aircraft systems in which there is a preponderance of multi-pulse, rectifier-fed motor-drive equipment, average dynamic models of the rectifier converters are required. Existing methods are difficult to apply to anything other than single converters with a low pulse number. Therefore an efficient, compact method for deriving the approximate, linear, average model of 6- and 12-pulse rectifiers, based on the assumption of a small duration of the overlap angle is presented. The models are validated against detailed simulations and laboratory prototypes.
Resumo:
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.
Resumo:
In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.
Resumo:
Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.